Meine Merkliste
my.chemie.de  
Login  

Batterierecycling




  Unter Batterierecycling wird die stoffliche Wiederverwertung von Batterien verstanden.

Für gebrauchte Batterien besteht per Gesetz eine Rückgabepflicht für Verbraucher und eine Rücknahmepflicht für Handel, öffentlich-rechtliche Entsorgungsträger, Hersteller und Importeure; in Deutschland durch die Batterieverordnung, in der Schweiz durch den Anhang 10.4 der Stoffverordnung.

In der Schweiz werden bereits 62,1 Prozent der gebrauchten Gerätebatterien wieder abgegeben und wiederverwertet (Stand: Dezember 2005). Obwohl in Deutschland jede Verkaufsstelle, die Batterien verkauft, diese auch zurücknehmen muss, beträgt die Rücklaufquote für Gerätebatterien hier nur 35 bzw. 40 Prozent, je nach Berechnung mit und ohne Lebensdauer (Stand: Dezember 2004). Im Jahr 2005 nahm die Stiftung Gemeinsames Rücknahmesystem Batterien 12.263 Tonnen verbrauchte Gerätebatterien und Akkus zurück. Das entspricht 149 Gramm Batterien pro Einwohner.

Besser ist die Lage bei Starterbatterien. Wer eine neue Starterbatterie kauft, muss 7,50 € Pfand zahlen, sofern er keine alte Batterie zurückgibt. Daher werden beinahe 100 Prozent der Bleibatterien in Deutschland gesammelt und wiederverwertet.

Die größte Anlage für Batterierecycling in Deutschland befindet sich in Bremerhaven. Dort werden 82 Prozent der zurückgegebenen Batterien (Primärzellen) aus sämtlichen elektronischen Geräten aussortiert (Stand: Dezember 2005; ohne Starterbatterien aus Kraftfahrzeugen) und mit einer Sortenreinheit von 98 bis 99 Prozent der Wiederverwertung zugeführt.

Inhaltsverzeichnis

Zink-Kohle, Zink-Luft und Alkali-Mangan-Batterien

Zink-Kohle-, Zink-Luft- und Alkali-Mangan-Batterien enthalten erhebliche Mengen Zink, das bei der Verwertung dieser Batterien im Vordergrund steht. Beim Recycling der zinkhaltigen Batterien ist der Imperial-Smelting-Prozess (IS) das bedeutendste Verfahren. Der Prozess ermöglicht die Verwendung verschiedener zinkhaltiger Stoffe und erfordert daher u. U. Verfahrensschritte, die dem Schmelzen vorangehen. Da sie für das Batterierecycling irrelevant sind, werden sie hier nicht näher betrachtet. Die zinkhaltigen Batterien werden zusammen mit Koks in den Schmelzofen eingebracht. Das Zink verdampft und verlässt zusammen mit den Abgasen den Ofen. In einem Absorber wird flüssiges Blei als feiner Nebel in die Abgase geblasen. Zink kondensiert an den Bleitröpfchen und kann abgepumpt werden. Durch Kühlen trennt sich das Gemisch wieder in Blei und Zink. Während das Zink flüssig abgestochen und weiterverarbeitet (Raffination) werden kann, wird das Blei zurück in den Absorber gepumpt.

Ein weiteres Verfahren wurde von den Firmen Sumitomo Heavy Industries und Batrec Industrie AG entwickelt. Beim Batrec-(Sumitomo-)Prozess werden die Altbatterien in einem Schachtofen auf 600–750 °C aufgeheizt. Dazu bedient man sich eines reduzierenden Heißwindes. Die bei der einsetzenden Pyrolyse entstehenden Gase werden anschließend in einer Nachbrennkammer vollständig oxidiert. Um die Bildung von Dioxinen zu vermeiden, werden die Reaktionsprodukte aus der Nachbrennkammer schlagartig auf 60 °C abgekühlt und anschließend einer Abgasreinigung zugeführt. Die Batteriereste aus der Pyrolyse werden in einen Schmelzofen eingebracht. Mittels Induktionsspulen wird das Material auf 1.500 °C aufgeheizt. In reduzierender Atmosphäre werden die enthaltenen Oxide unter Zugabe von Kohle und Magnesiumoxid reduziert und die Metalle aufgeschmolzen. Zink verdampft und wird in einen Absorber geleitet. Dort wird flüssiges Zink in den Abluftstrom gesprüht, an dem das gasförmige Zink kondensiert. Anschließend wird es in Barren gegossen. Das verbleibende Abgas kann aufgrund des hohen Kohlenstoffmonoxidgehalts als Energielieferant für die Pyrolyse genutzt werden. Im Schmelzofen befinden sich noch Schlacke und Ferromangan, die aufgrund unterschiedlicher Dichte leicht zu trennen sind. Das Ferromangan wird als Vorlegierung an Stahlwerke geliefert. Die Schlacke ist zu deponieren.

Nickel-Cadmium-Akkumulatoren

In einen Vakuumdestillationsofen wird ein Behälter mit etwa 500 kg Nickel-Cadmium-Akkumulatoren (NiCd-Akkus) eingesetzt. Der vakuumdicht verschlossene Ofen wird anschließend auf 0,1 mbar evakuiert. Mittels Induktionsspulen wird eine Ofeninnentemperatur von 100–150 °C erreicht. Die Temperatur ist ausreichend, um enthaltenes Wasser und evtl. vorhandene leicht flüchtige organische Bestandteile zu verdampfen. Danach erfolgt eine weitere Erwärmung auf 750 °C und die Zugabe von Prozessmitteln zur Reduzierung des enthaltenen Cadmiumoxids. Angesichts des niedrigen Drucks verdampft das Cadmium bereits bei 310 °C[1] (statt bei 767 °C unter Normaldruck). An einer kalten Stelle kondensiert das Cadmium und kann mit einer Reinheit von 99,9–99,99 % abgeschieden werden. Im Ofen bleibt ein cadmiumarmes Nickel-Eisen-Gemisch (Cadmiumgehalt je nach Dauer der Behandlung 5–300 ppm[2]) und ein Öl-Wasser-Gemisch zurück. Letzteres Gemisch kann chemisch-physikalisch aufbereitet werden. Das Nickel-Eisen-Gemisch kann entweder getrennt oder z. B. bei der Stahlherstellung verwendet werden. Vorteile der Vakuumdestillation sind die vergleichsweise geringen Kosten, die geringe Cadmiumbelastung des Nickel-Eisen-Gemischs und die sehr geringe Abgasbelastung. Cadmium oder Blei sind in den Abgasen nicht nachzuweisen[1].

NiCd-Akkumulatoren können darüber hinaus auch in einem Pyrolyseofen verwertet werden. Dazu werden 4000 kg Altbatterien in reduzierender Atmosphäre auf 350–500 °C aufgeheizt. Innerhalb von 14 h wird ein Großteil des enthaltenen Kunststoffs in flüchtige Kohlenwasserstoffe zersetzt oder verkohlt. Die Abgase des Pyrolyseofens müssen aufwendig nachbehandelt werden. Nach der Behandlung sind noch immer 30 µg Cadmium je m³ Luft nachweisbar[3][4]. Anschließend werden die Batteriereste komprimiert und in einem Destillationsofen auf 900 °C erhitzt. Das enthaltene Cadmiumoxid wird reduziert und Cadmium verdampft. An Kühlelementen kondensiert der Cadmiumdampf. Das Cadmium sowie ein Öl-Wasser-Gemisch können abgeschieden werden. Als dritte Fraktion erhält man ein Nickel-Eisen-Gemisch mit einem Cadmiumanteil von 0,1–0,5 % vom Gewicht. Diese Verwertungsmethode ist teurer als die Vakuumdestillation, das Nickel-Eisen-Gemisch ist zudem stärker mit Cadmium belastet als nach der Vakuumdestillation. Die Pyrolyse ermöglicht jedoch einen höheren Durchsatz.

Nickel-Metallhydrid-Akkumulatoren

Für NiMH-Akkumulatoren kann ebenfalls die Vakuumdestillation verwendet werden. Dabei konzentriert man sich auf das Entfernen des enthaltenen Wasserstoffs. Zurück bleibt wie bei der Verwertung der NiCd-Akkus ein Nickel-Eisen-Gemisch, das an Stahlhersteller weitergereicht werden kann. Bei einem zweiten Verfahren werden die Akkus in einer Schneidmühle geöffnet, damit der Wasserstoff entweichen kann. Anschließend werden die Akkus zusammen mit anderen nickelhaltigen Abfällen gemischt und als Vorlegierung für die Edelstahlproduktion verwendet.

Lithium-Batterien und Akkus

Diese Zellen werden zuerst elektrisch entladen. Anschließend wird die Zelle auf -180°C abgekühlt und in kleine Stückchen zerhackt.

Anschließend erfolgt eine thermische Behandlung. Dabei werden Metalle und Chemikalien abgeschieden. Gefährliche Chemikalien werden dabei neutralisiert oder gebunden.

Die anfallenden Chemikalien und Metalle können wiederverwertet werden.

Einzelnachweise

  1. a b Sojka, R. (1998): Innovative Recycling Technologies for Rechargeable Batteries
  2. Rentz, Prof. Dr. O.; Engels, Bernd; Schultmann, Dr. Frank (2001): Untersuchung von Batterieverwertungsverfahren und -anlagen hinsichtlich ökologischer und ökonomischer Relevanz unter besonderer Berücksichtigung des Cadmiumproblems"
  3. OekoConsult GmbH (2000): Behandlungsgrundsätze für Batterien und Akkumulatoren
  4. Trueb, L. F.; Rüetschi, P. (1998): Batterien und Akkumulatoren – Mobile Energiequellen für heute und morgen
 
Dieser Artikel basiert auf dem Artikel Batterierecycling aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.