Meine Merkliste
my.chemie.de  
Login  

Boride



Bei Boriden handelt es sich um chemische Verbindungen, die das Element Bor enthalten und bei denen der Reaktionspartner in der Regel eine niedrigere Elektronegativität besitzt. Eine Ausnahme würde zum Beispiel das Arsenborid darstellen. Ein Gegenbeispiel sind Bornitrid und Borcarbid, die rein formal nicht zu den Boriden gezählt werden.

Bei den meisten Boriden handelt es sich um Verbindungen mit Metallen, von denen viele keramische Eigenschaften aufweisen und so zu den Nichtoxidkeramiken gezählt werden. Boride haben beim Beispiel von Titan und Zirconium gegenüber den entsprechenden Metallen eine vielfach höhere elektrische und thermische Leitfähigkeit. Dieses Phänomen erklärt sich, wie später näher erläutert, durch ihre Struktur.

Herstellung

Es gibt diverse Möglichkeiten, Boride im industriellen Maßstab herzustellen. Die drei gängigsten sind die Bildung durch:

Bindungsverhältnisse bei den Boriden

Die Veranschaulichung der Bindungsverhältnisse bei Boriden ist ein komplexeres Thema. Die Bindungsmodelle ändern sich mit steigendem Boranteil wie im Folgenden kurz benannt (von niedrigem zu hohem Gehalt): 

  1. Boride mit isolierten Boratomen (z.B. M4B, M3B, M2B, M5B2, M7B3)
  2. Boride mit Einfach- und Doppelketten von Boratomen
  3. Boride mit zweidimensionalem Netzwerken(MB2, M2B5)
  4. Boride mit dreidimensionalem Netzwerken (MB4, MB6, MB12)

Dabei enthält die dritte Gruppe einige der am besten stromleitenden, härtesten und höchstschmelzenden Typen wie das Titanborid (TiB2). Aufgebaut ist dieser Typ durch alternierende Schichten dichtest-gepackter Metallatome und hexagonaler Bornetzwerke wie in der nachfolgenden Abbildung dargestellt. Durch den Schichtaufbau erklären sich die guten oben erwähnten Leitfähigkeiten.

Verwendung

Die Verwendung der Boride beschränkt sich in der Regel auf Spezialanwendungen, da es häufig günstigere Verbindungen mit ähnlichen Materialeigenschaften gibt. Bedeutsam sind jedoch die Boride mit Lanthanoiden, welche sich als hervorragende Elektronenemitter eignen. Das wohl bedeutsamste Borid ist jedoch das TiB2, welches sich durch seine hohe Härte, den hohen Schmelzpunkt bei über 3200 °C und seine elektrische Leitfähigkeit auszeichnet und unter entsprechenden Extrembedingungen Anwendung findet.

Im Jahr 2001 wurde entdeckt, dass Magnesiumdiborid MgB2 ein Supraleiter mit einer kritischen Temperatur von TC = 39 K ist. Dieses Material besitzt alle Voraussetzungen (gute Verarbeitbarkeit, hohe kritische Stromdichte, hohes kritisches Magnetfeld) um das bisher kommerziell als Tieftemperatursupraleiter (z.B. in MRT-Geräten) verwendete Triniobzinn Nb3Sn in den nächsten Jahren zu ersetzen. Durch Dotierung mit Kohlenstoff kann die kritische Temperatur noch um einige Kelvin erhöht werden.

 
Dieser Artikel basiert auf dem Artikel Boride aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf ie.DE nicht.