Meine Merkliste
my.chemie.de  
Login  

Festigkeit



Festigkeit ist eine Werkstoffeigenschaft und beschreibt den mechanischen Widerstand, den ein Werkstoff einer plastischen Verformung oder Trennung entgegensetzt. Aus dem Spannungs-Dehnungs-Diagramm werden die technisch relevanten Festigkeitskennwerte ermittelt. Je nach Werkstoff, Werkstoffzustand, Temperatur, Belastung und Belastungsgeschwindigkeit können unterschiedliche Festigkeiten erreicht werden.

Je nach Art der angreifenden Belastung unterscheidet man

Bei einer Zugbeanspruchung unterscheidet man zwischen den Begriffen

Die Dehngrenze wird dabei einer bestimmten plastischen Verformung, z.B. 0,2%, zugeordnet. Man schreibt dann Rp0,2. Die (ausgeprägte) Streckgrenze spielt nur bei un- und niedriglegierten Stählen in bestimmten Wärmebehandlungszuständen eine Rolle, insbesondere bei Baustahl.

In die mechanische Auslegung von Bauteilen fließt der Mindestwert bzw. gewährleistete Wert der Festigkeiten ein.

Die Mindestzugfestigkeit liegt beispielsweise bei einem Stahl (S235JR - früher St37-2), der im Stahlhochbau Verwendung findet, je nach Qualität bei 370 N/mm². Seine Mindeststreckgrenze hingegen bei 235 N/mm². Würde man nun in einem Zugversuch eine Probe dieses Stahls, welche einen Querschnitt von 1 mm² hat, mit einer Kraft belasten, müsste diese bei mindestens 370 N liegen um die Probe zu zerreißen. 370 N entsprechen auf der Erde dem Gewicht einer Masse von 37,7 kg. Daraus kann geschlossen werden, dass beim Versuch, mit diesem Stahldraht eine Masse von 37,7 kg oder größer zu heben, ein Versagen des Werkstoffes nicht mehr ausgeschlossen werden kann. Bei dieser Belastung wird der Draht bereits bleibend (plastisch) verformt. Da dies meistens nicht zugelassen werden soll, verwendet man bei der mechanischen Auslegung von Bauteilen häufig die Mindeststreckgrenze (Re). Dieser Wert gibt die Spannung im Werkstoff an bis zu der nur eine elastische Verformung stattfindet. Das heißt bei einer Zugkraft Fz von 235 N auf eine Probe mit einem Querschnitt von 1 mm² dehnt sich diese Probe zwar, sie kehrt aber, ohne sich bleibend (plastisch) zu verformen, in ihren Ursprungszustand zurück. Hier lässt sich eine Masse von 23,9 kg ermitteln, mit deren Gewicht dieser Werkstoff im Zugversuch belastet werden kann, sich aber elastisch verhält.

Aus Sicherheitsgründen werden die genannten Kennwerte in der technischen Anwendungen grundsätzlich noch durch einen Sicherheitsfaktor dividiert, der die Unsicherheiten bei der Beurteilung der Beanspruchung und die Streuung der Widerstandsgrößen berücksichtigt, aber auch vom möglichen Schaden bei Versagen des Bauteils abhängt. Im Stahlbau liegt der Sicherheitsfaktor für das Material in der Regel bei 1,1. Dabei ist zu beachten, dass die Belastungen jeweils durch eigene Faktoren abgesichert werden (Teilsicherheitskonzept).

Da die Kennwerte immer nur im einachsigen Zugversuch ermittelt werden, Bauteile aber oft mehrachsig beansprucht werden (z.B. Wellen auf Biegung und Torsion, wobei die Biegung an sich strenggenommen bereits eine mehrachsige Beanspruchung bedeutet) gilt es, unter Zuhilfenahme einer Festigkeitshypothese eine einachsige Vergleichsspannung zu ermitteln, die dann mit der bekannten Festigkeit verglichen werden kann.

Schwingende und auch viele sich allgemein bewegende Bauteile werden periodisch belastet. Diese Belastungen können nicht hinreichend mit Hilfe der oben genannten Kennwerte beschrieben werden, da es dort bereits bei deutlich geringeren Belastungen zum Versagen des Werkstoffs kommt. Solche Belastungen werden mit Hilfe der Dauerschwingfestigkeit erfasst.

Siehe auch

 
Dieser Artikel basiert auf dem Artikel Festigkeit aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.