Meine Merkliste
my.chemie.de  
Login  

Linde-Verfahren



Das Linde-Verfahren ist eine von Carl von Linde entwickelte technische Methode, das die Verflüssigung von Gasen sowie - im Falle von Gasgemischen - deren anschließende Zerlegung durch Destillation in ihre Bestandteile ermöglicht. Die kryogene (bei sehr tiefen Temperaturen stattfindende) Luftverflüssigung wurde 1895 von Carl von Linde entwickelt und patentiert, die Luftzerlegung 1902. Luftzerlegungsanlagen (technische Abkürzung: LZA) produzieren heute großtechnisch bedeutsame Mengen an Flüssigsauerstoff (LOX), Flüssigstickstoff (LIN) und Edelgasen.

Inhaltsverzeichnis

Prinzip

 

Das Entspannen eines realen Gases wird von einer Änderung seiner Temperatur begleitet, das abstrakte Modell des idealen Gases zeigt diesen Effekt nicht. Ob die Temperaturänderung in Form von Abkühlung oder Erwärmung auftritt hängt davon ab, ob die Inversionstemperatur (also die Temperatur, bei welcher der Joule-Thomson-Koeffizient des Gases einen Vorzeichenwechsel erfährt) überschritten ist. Befindet sich das System über der Inversionstemperatur, so erwärmt sich das Gas bei Expansion (genauer: isenthalper Expansion, d. h. die Enthalpie ändert sich durch die Volumenänderung nicht), geringere Temperaturen haben eine Abkühlung zur Folge; dieser Effekt wird im Linde-Verfahren genutzt. Siehe auch Joule-Thomson-Effekt.

Um die für viele Gase sehr niedrige Siedetemperatur zu erreichen (für Sauerstoff −183 °C,für Stickstoff -196 °C), benutzt man das entspannte Gas im Gegenstromprinzip zur Vorkühlung des verdichteten Gases.

Anwendung

Das Linde-Verfahren wird zur Abkühlung von Gasen bis zur Verflüssigung benutzt. Vor allem in großem Umfang zur Herstellung flüssiger Luft. Sauerstoff, Stickstoff sowie Argon und andere Edelgase werden durch die Zerlegung der flüssigen Luft in ihre Bestandteile gewonnen.

Luftverflüssigung

Die Luft wird zunächst von Wasserdampf, Staub und Kohlendioxid befreit. Ein Kompressor verdichtet die Luft dann auf einen Druck von 200 bar. Anschließend wird die Luft über ein Drosselventil oder einer Turbine entspannt, wobei ihre Temperatur im ersten Schritt um ca. 45 K auf ca. −25 °C sinkt. Diese abgekühlte Luft wird über einen Gegenstrom-Wärmeübertrager in den Kompressor zurückgeleitet und dient somit zur Kühlung weiterer komprimierter Luft vor deren Entspannung. Durch diesen Prozess wird die Luft allmählich so tief gekühlt, dass bei 20 bar Verflüssigung eintritt. Das Lindeverfahren gelang erst, nachdem die Gegenstromrekuperatoren durch Regeneratoren ersetzt wurden. Diese lassen sich weitaus kleiner, preiswerter und leistungsfähiger bauen, als Gegenstromrohrbündeltauscher. Inzwischen beherrscht man aber auch die letztere Technik durch Miniaturisierung. Regeneratoren neigen nicht zur Verstopfung durch Fremdgase. Siehe obenstehende Zeichnung!

In einem offenen Gefäß unter Atmosphärendruck nimmt flüssige Luft eine Temperatur von etwa −190 °C = 83 K an. Dabei siedet sie, sodass ihre niedrige Temperatur erhalten bleibt, denn dadurch wird der flüssigen Luft Verdampfungswärme entzogen. Die Menge der absiedenden Luft regelt sich so ein, dass die durch Wärmeleitung oder Einstrahlung zugeführte Wärme gleich der verbrauchten Verdampfungswärme ist. Je nach Größe und Isolierung des Behälters kann so die flüssige Luft einige Stunden bis viele Tage erhalten bleiben. Flüssige Luft darf jedoch keinesfalls in verschlossenen Behältern aufbewahrt werden, da der durch allmähliche Erwärmung steigende Innendruck diese sonst zum Bersten bringt.

Fraktionieren der verflüssigten Luft

  Flüssige Luft kann mittels Fraktionieren in ihre Bestandteile zerlegt werden: Man nutzt die unterschiedlichen Siedepunkte der einzelnen Luftbestandteile aus. Allerdings liegen die Siedepunkte von Sauerstoff und Stickstoff sehr dicht zusammen. Man benutzt daher eine Rektifikationssäule: Die flüssige Luft läuft über mehrere Rektifikationsböden im Gegenstrom zum aufsteigenden Gas nach unten. Sie nimmt den Sauerstoff aus dem Gas auf und gibt Stickstoff ab.

Dadurch wird die Flüssigkeit sauerstoffhaltiger, das Gas stickstoffhaltiger.

Verflüssigung von Wasserstoff und Helium

Um das Linde-Verfahren zur Wasserstoff und Helium-Verflüssigung anwenden zu können, muss man diese Gase erst unter die Inversionstemperatur (siehe unter Physikalische Grundlagen und Joule-Thomson-Effekt) Ti vorkühlen. Dies geschieht in der Regel mit flüssiger Luft.

Das schließlich erhaltene flüssige Helium siedet unter Atmosphärendruck bei 4,2 K. Dies ist der niedrigste Siedepunkt aller Elemente. Durch Abpumpen des Helium-Gases über dem siedenden Helium wird letzterem Verdampfungswärme entzogen, so dass sich seine Temperatur weiter senken lässt. Da der Dampfdruck mit der Temperatur aber sehr stark abfällt, erreicht man mit diesem Verfahren keine tiefere Temperatur als 0,84 K; zu ihr gehört der Dampfdruck 0,033 mbar.

Physikalische Grundlagen

Das Linde-Verfahren beruht auf dem Joule-Thomson-Effekt: Im idealen Gas üben die Teilchen keine Wechselwirkung aufeinander aus, weshalb die Temperatur des idealen Gases nicht vom Volumen abhängt. Reale Gase sind jedoch nicht ideal: Es gibt Wechselwirkungen, die sich in den Konstanten a und b der Van-der-Waals-Gleichung ausdrücken.

Der Energiegehalt des realen Gases ändert sich also auch bei adiabatischer (ohne Wärmeaustausch) Entspannung, ohne dass äußere Arbeit geleistet wurde. Das ist durch die Temperaturänderung nachweisbar.

Verbindet man zwei Gasbehälter mit einer porösen Wand und drückt das im Raum 1 unter Druck stehende Gas mit einem Kolben langsam durch diese Membran, die zur Verhinderung von Wirbeln und Strahlbildung dient, in Raum 2, der unter einem konstanten, aber geringeren Druck als Raum 1 steht, dann stellt sich ein kleiner Temperaturunterschied zwischen den beiden Räumen ein. Er beträgt bei Kohlenstoffdioxid etwa 0,75 K pro bar Druckdifferenz, bei Luft etwa 0,25 K.

Erklärbar ist das, wenn man bedenkt, dass im Raum 1 das Volumen V1 entfernt wurde. Der Kolben hat dem Gas die Arbeit p1V1 zugeführt. Die Gasmenge taucht im Raum 2 auf und muss die Arbeit p2V2 gegen den Kolben leisten. Die Differenz der Arbeit ist als innere Energie dem Gas zugute gekommen.

p_1 \cdot V_1 - p_2 \cdot V_2 = U_2 - U_1 bzw. U_1 + p_1 \cdot V_1 = U_2 + p_2 \cdot V_2

Die Enthalpie H = U + p \cdot V bleibt konstant. Dazu kommt beim van der Waals-Gas noch die kinetische Energie \frac{1}{2} f R T und die potentielle Energie -\frac{a}{V}, die sich als Arbeit gegen die Kohäsionskräfte der Teilchen ergibt. Sie steht in enger Verbindung mit dem Binnendruck a \over V^2 und ergibt sich aus einer Volumenintegration.

Damit ergibt sich unter der Berücksichtigung der van-der-Waals-Gleichung:

H = U + p V =\frac{1}{2}fRT-\frac {a}{V} + \left( \frac{RT}{V-b}-\frac{a}{V^2}\right)\cdot V=RT\left(\frac{f}{2}+\frac{V}{V-b} \right)-\frac{2a}{V}


Weil die Enthalpie erhalten bleibt, gilt daher für das totale Differential:

dH = \frac{\partial H}{\partial V}dV + \frac{\partial H}{\partial T}dT = 0

Umgeformt nach der Änderung der Temperatur dT ergibt sich:

dT=- \frac{\dfrac{\partial H}{\partial V}dV}{\dfrac{\partial H}{\partial T}} = \frac{ \dfrac{bT}{(V-b)^2}-\dfrac{2a}{RV^2}}{\dfrac{f}{2} + \dfrac{V}{V-b}} dV \approx \frac{bRT - 2a}{\left(\dfrac{1}{2}f +1 \right)RV^2} dV

Der Zähler ist bei hoher Temperatur positiv. Er wechselt sein Vorzeichen bei der Inversionstemperatur T_i = {2a \over Rb}.

Die kritische Temperatur für ein van der Waals Gas ist T_k = {8a \over {27 R b}} also T_i = 6{,}75\,T_k.

Oberhalb von Ti erwärmt sich ein Gas bei Entspannung, unterhalb kühlt es sich ab. Für Kohlenstoffdioxid und Luft liegt Ti deutlich über der Zimmertemperatur, für Wasserstoff dagegen bei −80 °C.

Ein hoher Wert der van der Waals-Konstanten a bewirkt daher, dass die Temperatur bei Entspannung des realen Gases stark absinkt. Das ist logisch, denn bei Volumenvergrößerung entfernen sich die Moleküle voneinander und müssen dabei Arbeit gegen die durch a charakterisierten Anziehungskräfte leisten. Diese Arbeit vermindert die kinetische Energie der Moleküle und damit die Temperatur des Gases.

Literatur

  • Christian Gerthsen, Kneser, Vogel: Physik: ein Lehrbuch zum Gebrauch neben Vorlesungen. 14. Auflage. Springer Verlag, Berlin, Heidelberg, 1982. ISBN 3-540-11369-X (782 S.). Kapitel 5.6.6 und 5.6.7.
  • Georg Veranneman: Technische Gase. Herstellung, Verteilung, Anwendung. 4., neu bearb. u. erw. Aufl. Verlag Moderne Industrie, o.O., 1988. ISBN 3-478-93229-7 (broschiert, 70 Seiten).
 
Dieser Artikel basiert auf dem Artikel Linde-Verfahren aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf ie.DE nicht.