Meine Merkliste
my.chemie.de  
Login  

Streuung (Physik)



Unter Streuung versteht man in der Physik allgemein die Ablenkung eines Objekts durch Wechselwirkung mit einem lokalen anderen Objekt (Streuzentrum). Beispiele sind die Streuung von Licht an Atomen oder Feinstaub, von Elektronen an anderen Elektronen oder von Neutronen an Atomkernen.

Die Stärke einer Streuung wird durch den so genannten Streuquerschnitt angegeben. Der Name kommt daher, dass der Streuquerschnitt bei klassischer Streuung von Massepunkten an einer harten Kugel gerade gleich dem Querschnitt der Kugel ist.

Man unterscheidet zwischen elastischer und unelastischer (oder inelastischer) Streuung. Bei elastischer Streuung (siehe auch Elastischer Stoß) ist die Summe der kinetischen Energien nach dem Stoß gleich groß wie vorher. Bei unelastischer Streuung ändert sie sich dagegen, z. B. geht ein Teil der vorhandenen kinetischen Energie in Anregungsenergie eines Atoms über oder wird, etwa bei Ionisationsvorgängen, zum Aufbrechen einer Bindung verwendet.

Die theoretische Beschreibung von Streuungen ist Aufgabe der Streutheorie.

Streuexperimente geben Aufschluss über die Form des Wechselwirkungspotentials. Ernest Rutherford zeigte anhand der Streuung von Alphateilchen an Atomen, dass die Atome einen schweren Kern enthalten müssen. Auch die Experimente der Hochenergiephysik sind ausnahmslos Streuexperimente.

Weiteres empfehlenswertes Fachwissen

Inhaltsverzeichnis

Streuwinkel, Vorwärts- und Rückstreuung

Der Streuwinkel θ ist als der Winkel definiert, um den das gestreute Teilchen abgelenkt wird. Als Vorwärtsstreuung werden Streuprozesse bezeichnet, bei denen es nur zu einer kleinen Ablenkung kommt (kleiner Streuwinkel). Rückstreuung oder Rückwärtsstreuung bezeichnet Streuprozesse mit einem Streuwinkel zwischen 90° und 180°.

Wenn beide Stoßpartner (streuendes und gestreutes Teilchen) eine Ruhemasse haben (also keine Photonen sind), wird bei Streuexperimenten in der Kern- und Teilchenphysik oftmals der Streuwinkel im Schwerpunktsystem betrachtet; dieser ist für die theoretische Betrachtung bedeutender als der Streuwinkel im Laborsystem.

In vielen Fällen ist die Vorwärtsstreuung wesentlich stärker als Streuung in andere Richtungen, hat also einen vergleichsweise großen differenziellen Wirkungsquerschnitt. Ein aus dem Alltag bekanntes Beispiel ist die Streuung von Licht an Staubteilchen in der Luft: Blickt man nahezu in Richtung der Lichtquelle (wenn beispielsweise Sonnenlicht in einen dunklen Raum fällt), sind die Staubteilchen deutlich als helle Punkte zu sehen.

Die Streuung in Rückwärtsrichtung (θ = 180°) ist im Rahmen der klassischen Physik meist schwächer als in alle anderen Richtungen, kann aber durch quantenmechanische Effekte bzw. Interferenzeffekte stärker als die Streuung in benachbarte Richtungen sein. Kohärente Rückstreuung ist auch für die hohe Helligkeit des Vollmondes verantwortlich.

Bestimmte Fälle der Streuung

Elektromagnetische Welle - Elementarteilchen

  • Thomson-Streuung: elastische elektromagnetische Streuung an (quasi)freien Elektronen.
  • Compton-Streuung: Wie Thomson-Streuung, aber an gebundenen Elektronen, unelastisch.

Elektromagnetische Welle - Materie

  • Rayleigh-Streuung: elastische (keine Energieübertragung) elektromagnetische Streuung an Objekten, die kleiner sind als deren Wellenlänge, auch Dipol-Streuung.
  • Raman-Streuung: unelastische Streuung an Atomen, Molekülen oder Festkörpern.
  • Mie-Streuung: Elektromagnetische Streuung an Objekten in der Größenordnung der Wellenlänge, auch Lorenz-Mie-Streuung, benannt nach dem deutschen Physiker Gustav Mie (1868-1957) und dem dänischen Physiker Ludvig Lorenz (1829-1891).
  • Phonon-Raman-Streuung: unelastische Streuung an optischen Phononen (Gitterschwingungen im Frequenzbereich des sichtbaren Lichts)
  • Brillouin-Streuung: unelastische Streuung an akustischen Phononen (Gitterschwingungen im Frequenzbereich von Schall)

Materie - Materie

(siehe hierzu Kinematik)

Photon-Atom-Wechselwirkungen

Es folgt eine schematische Darstellung zur Wechselwirkung eines Photons mit einem Atom. Die waagerechten Linien repräsentieren die diskreten Anregungszustände des Atoms, die das punktförmig dargestellte Elektron besetzen kann. Die unterste Linie entspricht dem energetischen Grundzustand.

Elastische Streuung (Rayleigh-Streuung)

Die Energie E=h\nu= \frac{hc}{\lambda} des eingestrahlten Photons ist zu klein, um das Atom anzuregen. Die Energie des gestreuten Photons ändert sich nicht. Im klassischen Grenzfall, d.h. einer großer Wellenlänge des Photons gegenüber dem Bohrradius des Atoms, spricht man von Rayleigh-Streuung.


Inelastische Streuung (Ramanstreuung)

Inelastische Streuung, die häufig auch als Raman-Streuung bezeichnet wird, tritt auf, wenn die Energie E=hf des einfallenden Lichtquants den Energiedifferenzbetrag zu einem höheren Anregungsniveau ΔE übersteigt. Die Energie des emittierten Photons beträgt im Falle einer inelastischen Streuung: hf'=hf - ΔE


Resonanzabsorption, spontane Emission, Fluoreszenz und Phosphoreszenz

Entspricht die Energie eines eintreffenden Photons genau der Differenz zweier diskreter Energieniveaus ΔE, so wird das Photon vom Atom absorbiert. Folgt unmittelbar die Emission eines Lichtquants gleicher Frequenz, so spricht man von Resonanzabsorption. Im Unterschied zur elastischen Streuung sind beide Photonen zueinander phasenverschoben. Kehrt das Atom erst nach einer endlichen Verweildauer im angeregten Zustand (spontan) wieder in den ursprünglichen Zustand zurück, spricht man von spontaner Emission. Erfolgt die Rückkehr in mehreren Stufen, d.h. unter Emission mehrerer Photonen spricht man von Fluoreszenz, bzw. bei sehr langen Lebensdauern der angeregten Zustände von Phosphoreszenz.


Compton-Streuung

Als Compton-Streuung wird der Vorgang bezeichnet, bei der das Atom durch ein einfallendes Photon großer Energie ionisiert wird und ein Elektron sowie ein Photon der Energie hf' emittiert werden.


Photoeffekt

Ein Absorptionsvorgang, bei dem ein Elektron die volle Energie des Photons übernimmt, wird als Photoeffekt bezeichnet. Dafür ist eine gewisse Bindungsfestigkeit des Elektrons aus Gründen der Kinematik notwendig; deshalb ist der Wirkungsquerschnitt für den Photoeffekt am größten in der innersten Schale (K-Schale) schwerer Atome.


Stimulierte Emission

Bei der stimulierten Emission wird ein vorhandenes angeregtes Atom durch ein mit passender Energie eingestrahltes Photon zur Emission eines zweiten, kohärenten Photons angeregt.


Anmerkung: Atome können nicht nur durch Wechselwirkung mit Licht, sondern auch durch Stöße mit anderen Teilchen (Elektronen, anderen Atomen u.a.) Energiequanten aufnehmen bzw. abgeben (Franck-Hertz-Versuch).

Literatur

  • Gustav Mie: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik, Vierte Folge, Band 25, 1908, No. 3, S. 377-445.
  • Ludvig Lorenz: Lysbevaegelsen i og uden for en af plane Lysbolger belyst Kugle. Det Kongelige Danske Videnskabernes Selskabs Skrifter, 6. Raekke, 6. Bind, 1890,1, p 1-62.
  • Ludvig Lorenz: Sur la lumière réfléchie et réfractée par une sphère (surface) transparente. in Œuvres scientifiques de L. Lorenz. revues et annotées par H. Valentiner. Tome Premier, Libraire Lehmann & Stage, Copenhague, 1898, p 403-529.

Siehe auch

 
Dieser Artikel basiert auf dem Artikel Streuung_(Physik) aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.