Meine Merkliste
my.chemie.de  
Login  

11.12.2009: Silizium ist das klassische Material für elektronische Bauteile. Wissenschaftler des Ferdinand-Braun-Instituts entwickeln nun Leistungstransistoren aus Galliumnitrid, die robuster, schneller und effizienter sind.

Leistungstransistoren sind die zentralen Bauelemente in elektrischen Leistungskonvertern, die Gleich- und Wechselstrom umwandeln und auf unterschiedliche Spannungen transformieren können. In Handyladegeräten sind sie ebenso zu finden wie in der Motoransteuerung eines ICE. Auch in der automobilen Elektronik spielen derartige Leistungskonverter eine entscheidende Rolle. Ihr Wirkungsgrad und ihre Leistungsdichte wird den Erfolg fast aller Green-Car-Konzepte zukünftiger Hybrid- und Elektroautos entscheidend mitbestimmen, denn die Leistungselektronik wird neben dem eigentlichen Elektroantrieb zur Bremsenenergierückgewinnung, für intelligente Batterieladekonzepte und das Bordnetz benötigt. Maßgebliche Entwicklungsimpulse gehen daher inzwischen von der Automobilindustrie aus.

Seit über 50 Jahren ist Silizium der Baustoff dieser Elektronikbauteile. Die Technologie ist mittlerweile jedoch so weit fortgeschritten, dass das Material selbst an seine Grenzen stößt. Bessere Materialeigenschaften verspricht Galliumnitrid (GaN). Im Bereich der Mikrowellentechnik werden bereits Hochfrequenzleistungstransistoren aus Galliumnitrid eingesetzt, zum Beispiel in Mobilfunkbasisstationen.

In einem laufenden und zwei beantragten Projekten will das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH), gemeinsam mit Partnern aus Wissenschaft und Industrie nun neuartige Galliumnitrid-Transistoren für die Leistungselektronik entwickeln. Dabei wird die gesamte Wertschöpfungskette von der Entwicklung bis zum fertigen Produkt abgedeckt. Dr. Oliver Hilt vom FBH beschreibt sein Ziel: "Wir streben effizientere Energieumwandler an, die dann beispielsweise in Hybrid- und Elektroautos, aber auch in Photovoltaik-Anlagen eingesetzt werden."

Galliumnitrid hat gegenüber Silizium einen entscheidenden Vorteil: Es hat einen hohen Bandabstand von 3,4 Elektronenvolt gegenüber 1,1 Elektronenvolt bei Silizium. Dadurch ist es möglich, GaN-Transistoren bei höheren Temperaturen zu betreiben. Der Kühlaufwand sinkt und Gewicht und Baugröße der Leistungskonverter verringern sich. Bei einem Elektroauto zum Beispiel bedeutet dies eine deutliche Energieersparnis. Galliumnitrid hat außerdem eine höhere Durchbruchfeldstärke. Im Vergleich zu einem gleich großen Siliziumtransistor können damit größere Spannungen geschaltet werden. In der Folge treten weniger Leistungsverluste auf. Darüber hinaus sorgt eine hohe Sättigungsgeschwindigkeit der Elektronen für schnellere Schaltgeschwindigkeiten - die Konvertermodule können noch kleiner werden. Die neuen GaN-Leistungstransistoren des FBH werden mehrere 10 Ampere bei Spannungen bis 1.000 Volt und mehr schalten. Insgesamt haben Leistungskonverter mit Galliumnitrid-Transistoren einen höheren Wirkungsgrad als jene mit Silizium-Transistoren. Sie sind robuster, schneller und effizienter.

"Ein wichtiges Problem haben wir schon gelöst", sagt Oliver Hilt. In der Leistungselektronik muss der Transistor aus Sicherheitsgründen vollständig ausgeschaltet sein, wenn keine Spannung an der Steuerelektrode anliegt. Einen solchen Transistor nennt man selbstsperrend. Das ist jedoch bei Galliumnitrid-Transistoren üblicherweise nicht der Fall: In der Mikrowellentechnik ist der Transistor bei null Volt Gatespannung immer noch im eingeschalteten Zustand. Man spricht von einem selbstleitenden Transistor. Um diesen Transistor auszuschalten, ist eine negative Gatespannung nötig. Die Einsatzspannung der FBH-Transistoren konnte von minus fünf Volt auf plus ein bis zwei Volt verschoben werden. "Damit sind wir ausreichend weit im positiven Bereich, um die Transistoren in der Leistungselektronik einsetzen zu können", erklärt Oliver Hilt. "Zusätzlich konnten wir den Einschaltwiderstand niedrig halten und damit gehören unsere selbstsperrenden GaN-Transistoren weltweit zu den besten."

Merkliste

Hier setzen Sie die nebenstehende News auf Ihre persönliche Merkliste

Mehr über Forschungsverbund Berlin
Kontakt
Forschungsverbund Berlin e.V.
Rudower Chaussee 17
12489 Berlin
Deutschland
Tel.
+49306392-3330
Fax
+49306392-8162
  • News

    In Nullkommanichts durch den Quantentunnel

    Wenn Elektronen die Energie zum Überwinden einer Energiebarriere nicht haben, „tunneln“ sie einfach durch diese Barriere hindurch - in der Quantenwelt nichts Ungewöhnliches. Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) können den Zeitpunkt des Austr ... mehr

    Wie Elektronen schwingende Atomkerne überholen

    Forscher des Max-Born-Institutes in Berlin verfolgten in Echtzeit die räumliche Schwingungsbewegung von Elektronen in einem Kristall, in dem sie einen Film mit Hilfe von ultrakurzen Röntgen-Blitzen drehten. Die äußeren Elektronen bewegen sich auf der Längenskala einer chemischen Bindung vor ... mehr

    Verrückte Spektroskopie trickst Quantenphysik aus

    Wissenschaftler des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie haben eine neuartige spektroskopische Methode entwickelt, welche die gleichzeitige Messung mehrerer Moleküleigenschaften erlaubt. Sie tricksen damit die Gesetzmäßigkeiten der Quantenphysik aus, die besag ... mehr

  • Verbände

    Forschungsverbund Berlin e.V.

    Der Forschungsverbund Berlin e.V. (FVB) ist Träger von insgesamt acht natur-, lebens- und umweltwissenschaftlichen Forschungsinstituten in Berlin, die unter Wahrung ihrer wissenschaftlichen Eigenständigkeit im Rahmen einer einheitlichen Rechtspersönlichkeit gemeinsame Interessen wahrnehmen. ... mehr

Mehr über Ferdinand-Braun-Institut für Höchstfrequenztechnik
Kontakt
Ferdinand-Braun-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Str. 4
12489 Berlin
Deutschland
Tel.
+49306392-2600
Fax
+49306392-2602
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.