Auf dem Weg zur Entdeckung neuer langlebiger Elemente

Erstmalig Einsatz von "Ionen-Fallen" zur Untersuchung von schwersten Elementen

12.02.2010 - Deutschland

Neben den auf der Erde natürlich vorkommenden 92 Elementen ist es Wissenschaftlern gelungen, noch über 20 weitere chemische Elemente zu entdecken. Sechs davon wurden beim GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt entdeckt. Sie konnten künstlich an Teilchenbeschleunigern hergestellt werden. Die künstlichen Elemente sind alle sehr kurzlebig, das heißt sie zerfallen nach Bruchteilen von Sekunden. Wissenschaftler sagen jedoch noch schwerere Elemente voraus, die sehr langlebig sind, das heißt möglicherweise erst nach mehreren Jahren zerfallen. Sie werden als Insel der Stabilität bezeichnet. Am GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt haben Wissenschaftler nun eine Messapparatur entwickelt und aufgebaut, mit der die Entdeckung solcher langlebiger Elemente erstmals möglich werden könnte.

G.Otto, GSI

Das Bild zeigt die Penning-Falle des Shiptrap-Experiments. Durch ein parallel zum Rohr angelegtes Magnetfeld werden die einfliegenden Ionen auf eine Spiralbahn im Rohr gezwungen, anhand deren Frequenz die Masse bestimmt werden kann.

Einem internationalen Team von Wissenschaftlern um Michael Block gelang es, Atome des Elements 102, Nobelium, und damit erstmals überhaupt ein so genanntes superschweres Element in einer Ionen-Falle einzufangen. Dadurch konnten sie die Masse von Nobelium-Atomen mit nie dagewesener Genauigkeit messen. Die Masse ist eine grundlegende Eigenschaft von Atomen, aus der sich unmittelbar die Bindungsenergie, die das Atom zusammenhält, berechnen lässt. Daraus wiederum lässt sich seine Lebensdauer bzw. Stabilität ermitteln. Der eigentliche Zerfall muss nicht wie bei früheren Methoden abgewartet werden. Deshalb können in einer Ionen-Falle Elemente mit extrem langen Lebensdauern nachgewiesen werden. Auf längere Sicht erhoffen sich die Wissenschaftler bis zur Insel der Stabilität, die im Bereich um die Elemente 114 bis 120 vermutet wird, vorzudringen.

"Die präzise Messung der Masse von Nobelium mit unserem neuen Messaufbau Shiptrap war ein erster erfolgreicher Schritt. Unser Ziel ist es nun, den Messaufbau weiter zu verfeinern, sodass wir zu immer schwereren Elementen vorstoßen können, um vielleicht eines Tages die Insel der Stabilität zu erreichen", sagt Michael Block, der Leiter der Experimentiergruppe am GSI Helmholtzzentrum.

Für seine Messungen baute das Team um Michael Block eine komplexe Apparatur, die Ionen-Falle Shiptrap, auf und kombinierte sie mit dem Geschwindigkeitsfilter Ship, mit dem bei GSI bereits sechs kurzlebige Elemente entdeckt werden konnten. Das Nobelium erzeugten sie, indem sie eine Blei-Folie mit Kalzium-Ionen aus dem GSI-Beschleuniger beschossen. Danach trennten sie das erzeugte Nobelium mit Ship von anderen Reaktionsprodukten ab. In der Shiptrap-Apparatur wurde das Nobelium zuerst in einer mit Gas gefüllten Zelle abgebremst und anschließend in einer so genannten Penning-Falle als Ion eingefangen. Durch Magnetfelder in der Falle gehalten, kreiste das Nobelium-Ion auf einer winzigen Spiralbahn mit einer bestimmten Frequenz, aus der sich direkt die Masse berechnen ließ. Die Massenbestimmung war bis auf fünf Millionstel Prozent genau. Die Masse und damit die Bindungsenergie kann somit viel genauer als bisher und erstmals direkt, also ohne Zuhilfenahme von theoretischen Annahmen, bestimmt werden.

An den Experimenten beteiligt waren neben GSI das Max-Planck-Institut für Kernphysik Heidelberg, die Universitäten Gießen, Greifswald, Heidelberg, Mainz, München, Padua (Italien), Jyväskylä (Finnland) und Granada (Spanien) sowie das PNPI (Petersburg Nuclear Physics Institute) und das JINR (Joint Institute for Nuclear Research) in Russland.

Originalveröffentlichung: M. Block et al.; "Direct mass measurements above uranium bridge the gap to the island of stability"; Nature, 463, 785-788 (11 February 2010)

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Chemie?