Pionierexperiment ermöglicht tiefen Röntgenblick in den Nanokosmos

Einem internationalen Forscherteam unter Beteiligung der TU Berlin gelangen Untersuchungen am stärksten Röntgenlaser der Welt

24.02.2010 - USA

Rund zwei Kilometer lang und etwa 300 Millionen Dollar teuer: Der „LCLS“ in Stanford südlich von San Francisco ist seit letztem Jahr der mit Abstand stärkste Röntgenlaser der Welt. Die Blitze, die er erzeugt, sind millionenfach intensiver als die der bisherigen Röntgenquellen. Ein internationales Forscherteam, zu dem auch Wissenschaftlerinnen und Wissenschaftler der TU Berlin gehören, hat jetzt einzelne Nanopartikel mit den Röntgen-Lichtblitzen der „Linac Coherent Light Source“ abgebildet. Die in den Bildern enthaltene Information offenbart erstmals Details mit einer Auflösung im Bereich einiger millionstel Millimeter.

Möglich wurden die ultraschnellen Schnappschüsse dank einer Apparatur, die Forscher der Advanced Study Group (ASG) um Joachim Ullrich, Ilme Schlichting und Lothar Strüder von der Max-Planck-Institut für Kernphysik entwickelt haben. Die „CFEL ASG Multi Purpose“ (CAMP) genannte Messkammer erlaubt ihnen, die Signale der Experimente extrem schnell und präzise zu messen. Mit den Pionierversuchen wird eine Hoffnung greifbar, die sich mit den neuen Röntgenlasern verbindet: Mit ihnen möchten Wissenschaftlerinnen und Wissenschaftler die Architektur einzelner Viren oder Proteine aufklären. Zu den ersten Forscherinnen und Forschern des inter­nationalen Teams, die mit dem neuen Röntgenlaser experimentiert haben, zählt auch eine Arbeitsgruppe der TU Berlin: Die Expertinnen und Experten um den Physiker Thomas Möller vom Institut für Optik und Atomare Physik und Christoph Bostedt vom LCLS in Kalifornien konnten zeigen, dass ein einzelner Röntgenblitz ausreicht, um tiefe Einblicke in die Struktur einzelner „Cluster“ zu gewinnen. So heißen winzige Nanoteilchen, in diesem Fall bestehend aus Tausenden von Xenon-Atomen.

Wichtiges Grundlagenwissen auch für Biologie und Medizin

„Die Experimente an Clustern liefern einen Einblick in die Wechselwirkung der extrem intensiven Lichtpulse mit den Nanoteilchen, die praktisch sofort nach der Abbildung zerfallen“, erläutert Möller. „Mit unseren Experimenten schaffen wir Grundlagenwissen, das helfen wird, auch andere Nanoteilchen mit einem Röntgenlaser zu untersuchen.“ Im Interesse stehen vor allem einzelne Biomoleküle wie Proteine, deren Struktur Biologen so detailliert wie möglich aufklären wollen.

Möglich wurden die Schnappschüsse dank der Apparatur, die Max-Planck-Forscher der Advanced Study Group (ASG) um Joachim Ullrich und Lothar Stüder (München) entwickelt haben. Die Messkammer namens CAMP erlaubte es dem Team, die “Bilder“ einzelner Cluster extrem schnell aufzunehmen. Das vier Millionen Euro teure und zehn Tonnen schwere Gerät enthält die weltweit größten und schnellsten Röntgen-CCD-Chips, sie messen Energie und Intensität des von der Probe gestreuten Lichts. „CAMP ist so erfolgreich, dass fast ein Drittel der bisher am LCLS genehmigten Experimente damit gemacht werden“, sagt ASG-Leiter Joachim Ullrich, Direktor am Max-Planck Institut für Kernphysik in Heidelberg. Der Grund: CAMP liefert viele unterschiedliche Informationen gleichzeitig und optimiert die Untersuchungen.

Information über die innerhalb extrem kurzer Zeit ablaufenden Prozesse

Mit dem Forscherteam haben die Berliner Physiker um Thomas Möller die Röntgenpulse aus dem Laser direkt in die CAMP-Messkammer geführt und mit Spiegeln auf einzelne Cluster fokussiert. Mit Hilfe der CCD-Chips konnten sie sowohl einzelne Cluster abbilden als auch deren Bruchstücke nachweisen – schließlich sind die Röntgenblitze so stark, dass sie die Nanoteilchen buchstäblich in Stücke hauen. Unter anderem haben die Forscher herausgefunden, wie sich die Teilchen mit den Röntgenblitzen treffen lassen und welche Informationen sie dabei über ihre Struktur preisgeben. „Die Experimente liefern wichtige Information über die innerhalb extrem kurzer Zeit ablaufenden Prozesse, die für die Abbildung einzelner Nanoteilchen relevant sind“, sagt Möller.

Viele Biomoleküle, die in lebenden Organismen eine wichtige Rolle spielen, entziehen sich der Strukturaufklärung mit den bisherigen Methoden. Die Strukturaufklärung von derartigen Molekülen ist das Ziel einer ganzen Reihe von Arbeitsgruppen insbesondere auch von Ilme Schlichting, Direktorin am Max-Planck-Institut für Medizinische Forschung in Heidelberg. Ein einzelnes Protein-Molekül aber liefert in der konventionellen Röntgenstrukturanalyse kein erkennbares Signal. „Wenn wir das Röntgenlicht also nicht an vielen Molekülen in einem Kristall streuen können, müssen wir mit extrem intensiven und kurzen Lichtpulsen arbeiten“, sagt Ilme Schlichting.

Langfristig versprechen sich die Wissenschaftler hier völlig neue Einblicke in die Welt des Winzigen. Ein Lichtblitz des Röntgenlasers könnte ihnen etwas über die Struktur einzelner Viren oder Proteine verraten. Bislang müssen die Biologen dazu kleine Kristalle aus den Proteinen züchten, um sie anschließend mit Röntgenlicht zu durchleuchten. Doch etwa 60 Prozent aller Biomoleküle lassen sich schlicht nicht kristallisieren – und entziehen sich damit bislang einer detaillierten Strukturanalyse. Dazu zählen auch viele Membran-Eiweiße. Sie sind für die Medizin höchst maßgeblich, denn fast die Hälfte aller derzeitigen Arzneien setzen an Membran-Eiweißen an. Große Röntgenlaser wie LCLS oder künftig der Europäische Röntgenlaser (European XFEL), der ab 2014 in Hamburg leuchten soll, können Abhilfe schaffen: Ihre Blitze sind derart intensiv, dass man hofft, dass bereits wenige Biomoleküle ausreichen, um sie ablichten zu können. Mit den Pionierversuchen in Kalifornien ist man diesem Ziel einen wichtigen Schritt näher gekommen.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Entdecken Sie die neuesten Entwicklungen in der Batterietechnologie!