Meine Merkliste
my.chemie.de  
Login  

Potenzial für eine grüne Wasserstoff-Wirtschaft

Erstmalige Charakterisierung einer sensorischen [FeFe] Hydrogenase gelungen

11.01.2018

Max-Planck-Institut für Chemische Energiekonversion

Hydrogenasen sind Enzyme, die in der Lage sind, Wasserstoffgas (H2) aus Protonen im wässrigen Milieu zu erzeugen. Eine Reaktion, die eine große Relevanz für eine potentielle zukünftige grüne Wasserstoffwirtschaft birgt.

Bakterien, die diese Enzyme enthalten, produzieren H2 häufig als Abfallprodukt ihres Zucker-basierten Metabolismus in Abwesenheit von Sauerstoff. Andere Bakterien können den Wasserstoff als Energiequelle nutzen. Hydrogenasen, die Schlüsselenzyme in beiden Prozessen sind nur unter speziellen Bedingungen erforderlich, d.h. ihre Synthese in dem Bakterium muss der Anwesenheit und Konzentration von H2 angepasst werden. Diese Regulation wird durch sogenannte sensorische oder regulatorische Hydrogenasen erreicht, die in der Lage sind, selbst kleinste Mengen von H2 im Medium zu detektieren und diese Information an die Protein-Synthesemaschinerie (für katalytische Hydrogenasen) weiterzuleiten.

Bis heute hat sich eine Klasse von Sensor-Hydrogenasen der Charakterisierung komplett entzogen, nämlich die der wichtigen [FeFe]-Hydrogenasen (HydS). Jetzt ist es einem Team von Wissenschaftlern am Max-Planck-Institut für Chemische Ernergiekonversion in Mülheim an der Ruhr und dem Institute of Low Temperature Science an der University of Hokkaido (Japan) gelungen, HydS aus dem thermophilen Bakterium Thermotoga maritima herzustellen und zu charakterisieren. Dieser Erfolg basiert auf der kürzlich entwickelten Technik der künstlichen Maturierung des Enzyms (Esselborn et al. Nat. Chem. Biol. 2013), sowie dem Einsatz moderner spektroskopischer Methoden, die zeigten wie das Protein das katalytische Zentrum in eleganter Weise feinabstimmt und es dadurch für seine sensorische Funktion optimiert.

Die Wissenschaftler zeigen, dass das katalytische Zentrum sehr empfindlich auch kleinste Mengen H2 detektiert, was dem Bakterium eine sehr effektive Signalübertragung erlaubt. Diese Ergebnisse stellen einen wesentlichen Schritt im Verständnis der Funktion der sensorischen Hydrogenasen dar. Die Kenntnis der Änderungen der Aminosäureumgebung im Sensor im Vergleich zu den katalytischen [FeFe]-Hydrogenasen ist ein wichtiges Element für das tiefere Verständnis dieser Wasserstoff-umsetzenden bzw. -erzeugenden Proteine. Die umfassende Entschlüsselung des Mechanismus der Hydrogenasen bietet die Grundlage, um bessere bioinspirierte Katalysatoren für den Einsatz in Brennstoffzellen und Wasserelektrolyseuren zu entwickeln. Ein wichtiger Schritt auf dem Weg zu einer Energiewirtschaft, die auf Wasserstoff als Energieträger basiert.

Fakten, Hintergründe, Dossiers
  • Bakterien
  • Thermotoga maritima
Mehr über Max-Planck-Institut für chemische Energiekonversion
Mehr über Max-Planck-Gesellschaft
  • News

    Weniger Dünger reduziert die Feinstaubbelastung

    Für Feinstaub gibt es viele Quellen – nicht nur den Verkehr, der dafür derzeit besonders viel Aufmerksamkeit erfährt. Auch eine Reduktion landwirtschaftlicher Emissionen könnte die Menge an gesundheitsschädlichem Feinstaub erheblich senken, wie eine Studie von Forschern des Max-Planck-Insti ... mehr

    Weltweit kleinster Düsenantrieb entwickelt

    Dr. Samuel Sánchez ist begeistert, gleich wie beim letzten Mal, als er den Eintrag ins Guinnessbuch der Rekorde bekam für den kleinsten Düsenantrieb, der jemals entwickelt wurde. Sánchez ist Wissenschaftler am Stuttgarter Max-Planck-Institut für Intelligente Systeme, wo er die Nanoroboter-F ... mehr

    Steife Fasern aus Schleim gesponnen

    Die Natur ist immer wieder ein guter Lehrmeister – auch für Materialwissenschaftler. An Stummelfüßern haben Wissenschaftler nun einen bemerkenswerten Mechanismus beobachtet, durch den sich Polymermaterialien bilden. Um Beute zu fangen, schießen die wurmartigen Kleintiere mit einem klebrigen ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.