Meine Merkliste
my.chemie.de  
Login  

Extrem helle und schnelle Lichtemission

12.01.2018

ETH Zürich / Empa / Maksym Kovalenko

Ein Cäsium-Bleibromid-Nanokristall unter dem Elektronenmikroskop (Kristallbreite: 14 Nanometer). Einzelne Atome sind als Punkte sichtbar.

IBM Research / Thilo Stöferle

Eine Probe mit mehreren grün leuchtenden Perowskit-Quantenpunkten, die von einem blauen Laser angeregt werden.

Eine in den vergangenen Jahren intensiv untersuchte Art von Quantenpunkten kann Licht in allen Farben wiedergeben und ist sehr hell. Ein internationales Forscherteam mit Beteiligung von Wissenschaftlern der ETH Zürich hat nun herausgefunden, warum dem so ist. Die Quantenpunkte könnten dereinst in Leuchtdioden zum Einsatz kommen.

Ein internationales Team von Wissenschaftlern der ETH Zürich, von IBM Research Zurich, der Empa und von vier amerikanischen Forschungseinrichtungen hat die Erklärung gefunden, warum eine in den letzten Jahren intensiv untersuchte Klasse von Nanokristallen in so unglaublich hellen Farben leuchtet. Bei den Nanokristallen handelt es um solche aus Cäsium-Blei-Halogenid-Verbindungen, die in einer sogenannten Perowskit-Gitterstruktur angeordnet sind.

Vor drei Jahren ist es Maksym Kovalenko, Professor an der ETH Zürich und der Empa, gelungen, aus diesem Halbleitermaterial Nanokristalle – oder Quantenpunkte, wie sie auch genannt werden – herzustellen. «Diese winzigen Kristalle erwiesen sich als extrem helle und schnell emittierende Lichtquellen, heller und schneller als jede andere bisher untersuchte Art von Quantenpunkten», sagt Kovalenko. Indem er die Zusammensetzung der chemischen Elemente und die Nanopartikelgrösse variierte, gelang es ihm ausserdem, unterschiedliche Nanokristalle herzustellen, die in den Farben des gesamten sichtbaren Spektrums leuchten. Diese Quantenpunkte werden daher auch als Komponenten zukünftiger Leuchtdioden und Bildschirme gehandelt.

In einer Studie untersuchte das internationale Forscherteam diese Nanokristalle nun einzeln und äusserst detailliert. Dabei konnten die Wissenschaftler bestätigen, dass die Nanokristalle extrem schnell Licht emittieren. Bisher untersuchte Quantenpunkte senden bei Raumtemperatur typischerweise rund 20 Nanosekunden, nachdem sie angeregt werden, Licht aus. Das ist bereits sehr schnell. «Cäsium-Blei-Halogenid-Quantenpunkte hingegen emittieren Licht bei Raumtemperatur nach nur einer Nanosekunde», erklärt Michael Becker, der Erstautor der Studie. Er ist Doktorand der ETH Zürich und führt seine Doktorarbeit bei IBM Research durch.

Elektronen-Loch-Paar in angeregtem Zustand

Um zu verstehen, warum die Cäsium-Blei-Halogenid-Quantenpunkte nicht nur schnell, sondern auch sehr hell sind, muss man in die Welt der einzelnen Atome, Lichtteilchen (Photonen) und Elektronen eintauchen: «Halbleiter-Nanokristalle kann man mit einem Photon so anregen, dass ein Elektron seinen angestammten Platz im Kristallgitter verlässt und dort eine Lücke hinterlässt», erklärt David Norris, Professor für Material-Engineering an der ETH Zürich. Es entsteht ein Elektronen-Loch-Paar, das sich in einem angeregten Energiezustand befindet. Fällt das Elektronen-Loch-Paar in seinen energetischen Grundzustand zurück, wird dabei Licht emittiert.

Unter bestimmten Bedingungen sind verschiedene Zustände angeregter Energie möglich, wobei in vielen Materialien der wahrscheinlichste davon ein ‹dunkler Zustand› genannt wird. «In einem solchen dunklen Zustand kann das Elektronen-Loch-Paar nicht direkt in den Grundzustand zurückfallen. Die Lichtemission wird daher unterdrückt, sie erfolgt langsamer und ist weniger hell», sagt Rainer Mahrt, Wissenschaftler bei IBM Research.

Nicht im dunklen Zustand

Wie die Forschenden nun zeigen konnten, unterscheiden sich die Cäsium-Blei-Halogenid-Quantenpunkte von anderen Quantenpunkten: Bei den Cäsium-Blei-Halogenid-Quantenpunkten ist der wahrscheinlichste angeregte Energiezustand kein dunkler Zustand. Vielmehr befinden sich angeregte Elektronen-Loch-Paare in einem Zustand, aus dem sie sofort Licht emittieren können. «Dies ist der Grund, warum sie so hell leuchten», sagt Norris.

Zu diesem Schluss kamen die Forschenden anhand ihrer neuen Experimentaldaten und mithilfe von theoretischen Überlegungen, bei denen Alexander Efros federführend war, ein theoretischer Physiker am Naval Research Laboratory in Washington. Er ist ein Pionier der Quantenpunkt-Forschung und fand vor 35 Jahren gemeinsam mit anderen Wissenschaftlern heraus, wie traditionelle Halbleiter-Nanokristalle funktionieren.

Hervorragend für Datenübertragung

Weil die untersuchten Cäsium-Blei-Halogenid-Quantenpunkte nicht nur hell sind, sondern auch günstig herzustellen, kommen sie für den Einsatz in Bildschirmen infrage. Mehrere Firmen, sowohl in der Schweiz als auch weltweit, leisten Entwicklungsarbeit in diesem Bereich. «Weil die Quantenpunkte Photonen sehr schnell emittieren können, sind sie ausserdem interessant für die optische Datenkommunikation innerhalb von Rechenzentren und Supercomputern. Schnelle, kleine und effiziente Komponenten sind dort besonders wichtig», sagt Mahrt. Eine weitere künftige Anwendung wäre die optische Simulation von Quantensystemen, welche in der Grundlagenforschung und der Materialwissenschaft bedeutend ist.

ETH-Professor Norris schliesslich ist daran interessiert, das neue Wissen für die Entwicklung neuer Materialien zu nutzen. «Da wir nun verstehen, warum diese Quantenpunkte so hell sind, können wir auch darüber nachdenken, andere Materialen mit ähnlichen oder noch besseren Eigenschaften zu entwickeln», sagt er.

Fakten, Hintergründe, Dossiers
  • Cäsium-Blei-Halogen…
  • Photonen
Mehr über ETH Zürich
  • News

    Perfekte Umkehr

    Komplexe Strukturen perfekt umzukehren ist technisch sehr wichtig. ETH-Forschern ist es nun gelungen, die magnetische und elektrische Struktur von Materialien mit einem einzigen magnetischen Feldpuls umzudrehen. Wenn es unangenehm laut wird, kommt seit einigen Jahren in Kopfhörern oder Ober ... mehr

    Atombewegungen im Kristall sichtbar machen

    Wissenschaftler können über Details oft hitzig und lange debattieren. Zum Beispiel darüber, ob und wie sich Atome in einem Kristall beim Erwärmen verschieben und damit die Symmetrie verändern. Für das Mineral Bleitellurid lösten nun ETH-Forschende mit Simulationen auf dem CSCS-Supercomputer ... mehr

    Bodenmikroben bauen Kunststofffolie ab

    Dünne Mulch-Folien aus Polyethylen werden in vielen Ländern im Ackerbau eingesetzt und verschmutzen dort Böden massiv. Nun zeigen Forscher der ETH Zürich und der Eawag auf, dass es Alternativen gibt: Folien aus dem Kunststoff PBAT werden im Boden biologisch abgebaut. Unsere Welt ertrinkt in ... mehr

  • Forschungsinstitute

    ETH Zürich Inst.f. Lebensm.wiss.,Ern.,Ges.

    Die Kernkompetenzen des Labors für Lebensmittelmikrobiologie sind die Detektion und Kontrolle von pathogenen Organismen im Lebensmittel, die Analyse komplexer Mikrofloren und molekulare Mechanismen der bakteriellen Pathogenität. mehr

  • Universitäten

    Eidgenössische Technische Hochschule Zürich (ETH Zürich)

    mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.