Meine Merkliste
my.chemie.de  
Login  

Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Entdeckung könnte den Weg zu neuen diagnostischen Werkzeugen ebnen

16.01.2018

© Madhavi Krishnan / University of Zurich

Forschende können die effektive elektrische Ladung eines Moleküls feststellen, indem sie dieses in einem Potentialtopf fangen und messen, wie lange es darin bleibt.

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft undenkbar: Viele biologische Prozesse beruhen auf Interaktionen von Molekülen wie Proteinen, bei denen die Ladung eine entscheidende Rolle spielt. Doch die Ladung eines Proteins in einer wässrigen Umgebung – das normale Umfeld in einem lebenden Organismus – lässt sich mit herkömmlichen Ansätzen kaum genau bestimmen.

Im Rahmen einer SNF-Förderungsprofessur an der Universität Zürich hat Madhavi Krishnan eine Methode entwickelt, um die Ladung eines einzelnen Moleküls in Lösung zu messen. Ihr Vorgehen beschrieb sie in einer Reihe von Artikeln in den Fachzeitschriften Nature Nanotechnology, Physical Review E und Journal of Chemical Physics. Diese Entdeckung könnte den Weg zu neuen diagnostischen Werkzeugen ebnen, da viele Krankheiten auf molekularer Ebene damit zusammenhängen, dass ein Protein aufgrund einer veränderten elektrischen Ladung nicht mehr einwandfrei arbeitet.

Die Ladung eines Moleküls kann sich beträchtlich verändern, je nachdem, ob es sich in Gasphase oder Lösung befindet. Der Grund für diesen Unterschied liegt in den komplexen Wechselwirkungen mit den umgebenden Flüssigkeitsmolekülen. Deshalb ergeben die üblichen Gasphasemessungen keine direkten Informationen zum Verhalten des Moleküls in seinem biologischen Umfeld.

"Wie Kinder beim Ballspiel"

Moleküle in Lösung sind ständig in Bewegung, da sie dauernd und rein zufällig zusammenstossen. Krishnan und die Doktorandin Francesca Ruggeri nutzten dieses als Brownsche Bewegung bekannte Phänomen, um die effektive Ladung eines Moleküls direkt in der Lösung zu messen.

Zuerst fingen sie das Molekül in einem sogenannten Potentialtopf. Das ist die anschauliche Bezeichnung für den Zustand eines Moleküls bei minimaler potentieller Energie. Durch die fortwährenden Zusammenstösse mit den hüpfenden Wassermolekülen droht dem Molekül dabei ständig der Herauswurf aus dem Topf.

"Die Situation lässt sich mit Kindern vergleichen, die in einer Grube mit einem Ball spielen", erklärt Krishnan. "Der Ball ist das untersuchte Proteinmolekül, die Kinder sind die Wassermoleküle. Der Ball müsste einen ziemlich heftigen Tritt erhalten, um aus der Grube zu fliegen."

Je höher die effektive Ladung des Moleküls, desto grösser ist die Tiefe des Potentialtopfs und desto geringer ist folglich die Wahrscheinlichkeit, dass das Molekül aus dem Topf gestossen wird. Deshalb hängt die Zeit, bis das Molekül aus dem Topf fliegt, direkt mit der effektiven Ladung zusammen.

"Letztlich ist es ein statistisches Prinzip", erklärt Krishnan. "Wenn wir wissen, wie lange ein Molekül im Topf gefangen bleibt, wissen wir auch, wie tief der Topf ist. Und da die Topftiefe wiederum direkt von der effektiven Ladung des Moleküls abhängt, können wir diesen Wert sehr genau bestimmen."

Zwei Glasplatten

Um einen Potentialtopf zu erzeugen, komprimierten die Forschenden eine Lösung mit dem Protein zwischen zwei Glasplatten, eine davon mit mikroskopisch kleinen Löchern. Die in Potentialtöpfen gefangenen Moleküle wurden mit einem Fluoreszenzmittel markiert und liessen sich so mit einem optischen Mikroskop beobachten.

Diese Entdeckung ist für die Grundlagenforschung wichtig, sie könnte aber auch den Weg ebnen zu neuartigen diagnostischen Werkzeugen für viele Krankheiten, die mit falsch gefalteten Proteinen zusammenhängen, wie Alzheimer oder Krebs. "Wir wissen, dass die 3D-Konformation die effektive Ladung beeinflusst. Unsere Methode könnte einen neuen Ansatzpunkt bieten, um fehlerhafte Proteine nachzuweisen."

Fakten, Hintergründe, Dossiers
  • Moleküle
  • Ladungsmessung
  • Proteine
  • Diagnostik
Mehr über Universität Zürich
  • News

    Neuartige Isolatoren mit leitenden Kanten

    Physiker der UZH erforschen eine neue Materialklasse, die sogenannten topologischen Isolatoren höherer Ordnung. Die Kanten dieser kristallinen Festkörper leiten elektrischen Strom verlustfrei, während der Rest des Kristalls isoliert. Dies wäre sehr nützlich in der Halbleitertechnik und für ... mehr

    Schnellere Strukturbestimmung organischer Salze

    UZH-Forschende haben eine neue Methode entwickelt, mit der sich die Kristallstrukturen von organischen Salzen schneller und mit erheblich kleinerem Aufwand bestimmen lassen als bisher. Da salzartige Substanzen rund 40 Prozent aller medizinischen Wirkstoffe ausmachen, dürfte das neue kristal ... mehr

    Schmelzende Eisdecke könnte Schadstoffe aus dem Kalten Krieg freilegen

    In den 60er Jahre wurde in Grönland ein militärischer Stützpunkt unter dem Eis aufgegeben. Eine internationale Studie mit Beteiligung der Universität Zürich zeigt nun: Durch den Klimawandel könnten gefährliche Abfallstoffe wieder an die Oberfläche gelangen, die eigentlich als für immer unte ... mehr

  • Videos

    Von Sonnenlicht zu chemischer Energie

    Wie macht man aus Sonnenlicht und Wasser Energie, die gespeichert oder als Treibstoff verwendet werden kann? Chemiker der Universität Zürich forschen an der Energieform der Zukunft. mehr

  • Universitäten

    Universität Zürich

    Die Universität Zürich gehört zu den besten Forschungsuniversitäten Europas und bietet das grösste Angebot an Studienfächern in der Schweiz. mehr

  • q&more Artikel

    Vom Nachtschwärmer zur Lerche

    Die meisten Menschen kommen aufgrund ihrer Biochronologie entweder als Lerche (Frühaufsteher) oder Eule (Morgenmuffel) zur Welt und in der Pubertät entwickeln sie sich zum Nachtschwärmer. Mit dem 20. Lebensjahr tritt dann eine Wende ein und der Schlaf- und Wachrhythmus verschiebt sich konti ... mehr

  • Autoren

    Dr. Steven A. Brown

    Steven B. Brown studierte Biochemie am Harvard College, Cambridge, Massachusetts, USA. 1997 promovierte er im Fachgebiet Biological Chemistry and Molecular Pharmacology, Harvard University, Cambridge, Massachusetts, USA. Von 1998-2005 war er als Postdoc am Institut für Molekulare Biologie a ... mehr

Mehr über Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.