Meine Merkliste
my.chemie.de  
Login  

Wenn Elektronen Walzer tanzen

Rechts- und linkshändige Moleküle lassen sich mit Hilfe kurzer Laserpulse auseinanderhalten

21.02.2018

Samuel Beaulieu

Durch einen ultrakurzen, zirkular polarisierten Laserpuls folgen die Elektronen einer spiralförmigen Rechts- oder Linksdrehung, die von der Händigkeit der Moleküle abhängt.

Die Identifikation rechts- und linkshändiger Moleküle ist entscheidend für viele Anwendungen in der Chemie und Pharmazie. Ein internationales Forscherteam (CELIA-CNRS/INRS/Max-Born-Institut/SOLEIL) hat nun ein neues originelles und hochempfindliches Verfahren vorgestellt, mit dem sich die Händigkeit von Molekülen um ein Vielfaches besser bestimmen lässt als mit bisherigen Methoden. Mit Hilfe extrem kurzer Laserpulse bringen die Forscher Elektronen in Molekülen zum Schwingen und können so den Drehsinn der Moleküle bestimmen.

Nicht nur beim Menschen ist die Frage wichtig, ob jemand Rechts- oder Linkshänder ist. Je nachdem, mit welcher Hand wir etwas greifen, umschließen unsere Finger ein Objekt im Uhrzeigersinn oder gegen ihn. Auch in der Welt der Moleküle ist die Händigkeit von großer Bedeutung. Bei Molekülen ist die Eigenschaft, eine bevorzugte Händigkeit zu haben, sogar noch viel wichtiger als beim Menschen: Denn bestimmte Substanzen können je nachdem, ob sie rechts- oder linkshändig vorliegen, entweder giftig oder heilsam sein. Manche Medikamente dürfen deshalb nur entweder links- oder rechtshändige Moleküle enthalten.

Das Problem dabei liegt darin, rechts- und linkshändige Moleküle, die sonst völlig identisch sind, nach ihrem „Chiralität“ genannten Drehsinn zu identifizieren und zu trennen. Denn außer bei Kontakt mit einem anderen chiralen Stoff verhalten sie sich völlig gleich. Ein internationales Forscherteam hat nun ein neues Verfahren entwickelt, mit dem sich die Händigkeit von Molekülen mit extremer Empfindlichkeit bestimmen lässt.

Seit dem 19. Jahrhundert ist bekannt, dass Moleküle in unterschiedlicher Händigkeit vorliegen können. Bekanntestes Beispiel ist das Erbgut, wie etwa menschliche DNA, dessen Struktur einem rechtsdrehenden Korkenzieher entspricht. Zur Bestimmung der Händigkeit nutzt man üblicherweise sogenannte zirkular polarisierte Lichtstrahlen, die entweder rechts- oder linksdrehende elektromagnetische Felder aufweisen – wie ein Korkenzieher entlang der Ausbreitungsachse gewickelt. Dieses chirale Licht wird etwas besser oder schlechter absorbiert, wenn es auf Moleküle mit gleichem oder umgekehrtem Drehsinn trifft. Der Effekt ist jedoch klein, da die Wellenlänge von Licht sehr viel größer ist als die atomaren Abstände in Molekülen. Das Licht „spürt“ den Drehsinn der Moleküle also nur ganz schwach.

Mit der neuen Methode lässt sich das Signal aber enorm verstärken. „Der Trick besteht darin, die Moleküle mit einem sehr kurzen Laserpuls zu bestrahlen“, sagt Prof. Olga Smirnova, Leiterin der Theoriegruppe am Max-Born-Institut. Solch ein Puls ist nur rund eine zehntel billionstel Sekunde lang und überträgt Energie auf die Elektronen im Molekül. Das regt sie für kurze Zeit zu Schwingungen an. Da sich die Elektronen in der rechts- oder linkshändigen Struktur des Moleküls befinden, nimmt auch ihre Schwingung diesen Drehsinn an.

Die Schwingung lässt sich dann mit einem zweiten Laserpuls auslesen. Dieser Puls muss ebenfalls kurz sein, um die Richtung der Elektronenbewegung registrieren zu können. Er hat so viel Energie, dass er die angeregten Elektronen aus dem Molekül herausschlägt. Je nachdem, ob die Elektronen rechts- oder linkshändig orientierte Schwingungen vollführten, fliegen sie dann entweder in Richtung des Laserstrahls aus dem Molekül oder in umgekehrter Richtung.

Bei Experimenten am „Centre for Intense Lasers and Applications“ (CELIA) der Universität Bordeaux konnte auf diese Weise sehr effizient die Händigkeit der Moleküle bestimmt werden, und zwar mit einem 10.000-fach stärkeren Signal als mit der üblicherweise genutzten Methode. Außerdem lassen sich so chirale chemische Reaktionen einleiten und über die Zeit verfolgen. Das Kunststück besteht darin, sehr kurze Laserpulse mit der passenden Frequenz bereitzustellen. Diese Technologie stammt aus der physikalischen Grundlagenforschung und ist erst seit Kurzem verfügbar. Sie könnte sich für andere Bereiche als äußerst hilfreich erweisen, bei denen die Händigkeit von Molekülen eine Rolle spielt, etwa für die chemische und pharmazeutische Forschung.

Da die Identifikation der Händigkeit von Molekülen mit der neuen Methode gelungen ist, denken die Wissenschaftler bereits darüber nach, auch ein Laser-Trennverfahren für rechts- und linkshändige Moleküle zu entwickeln.

Fakten, Hintergründe, Dossiers
  • Elektronen
  • Moleküle
  • Chiralität
Mehr über MBI
  • News

    Langsam, aber effizient

    In den letzten 30 Jahren wurden die Wechselwirkungen zwischen intensiven Lasern und Clustern in erster Linie als ein vielversprechender Weg angesehen, um hochenergetische Ionen und Elektronen zu erzeugen. In überraschendem Gegensatz zu diesem bis heute vorherrschenden Paradigma hat ein Fors ... mehr

    Konzepte für neue schaltbare plasmonische Nanobauteile

    Plasmonische Wellenleiter eröffnen die Möglichkeit zur Entwicklung dramatisch verkleinerter optischer Bauteile und liefern eine vielversprechende Route zu zukünftigen Technologien für integrierte Schaltkreise für die Informationsverarbeitung, für optisches Computing und andere. Hauptelement ... mehr

    Lasergetriebene Elektronenrekollision erinnert sich an die Molekülorbitalstruktur

    Wissenschaftler vom Max-Born-Institut in Berlin haben durch eine Kombination modernster Experimente und numerischer Simulationen eine grundlegende Annahme der Starkfeld-Physik untersucht. Ihre Ergebnisse verfeinern unser Verständnis von starkfeldgetriebenen Prozessen, wie der Erzeugung hohe ... mehr

  • Forschungsinstitute

    Max-Born-Institut (MBI) im Forschungsverbund Berlin e.V

    Das Max-Born-Instiitut (MBI) betreibt Grundlagenforschung auf dem Gebiet der nichtlinearen Optik und Kurzzeitdynamik bei der Wechselwirkung von Materie mit Laserlicht und verfolgt daraus resultierende Anwendungsaspekte. Es entwickelt und nutzt hierzu ultrakurze und ultraintensive Laser und ... mehr

Mehr über Forschungsverbund Berlin
  • News

    Langsam, aber effizient

    In den letzten 30 Jahren wurden die Wechselwirkungen zwischen intensiven Lasern und Clustern in erster Linie als ein vielversprechender Weg angesehen, um hochenergetische Ionen und Elektronen zu erzeugen. In überraschendem Gegensatz zu diesem bis heute vorherrschenden Paradigma hat ein Fors ... mehr

    Lasergetriebene Elektronenrekollision erinnert sich an die Molekülorbitalstruktur

    Wissenschaftler vom Max-Born-Institut in Berlin haben durch eine Kombination modernster Experimente und numerischer Simulationen eine grundlegende Annahme der Starkfeld-Physik untersucht. Ihre Ergebnisse verfeinern unser Verständnis von starkfeldgetriebenen Prozessen, wie der Erzeugung hohe ... mehr

    Schwingende Atome schalten die elektrische Polarisation von Kristallen

    Ferroelektrische Kristalle besitzen eine makroskopische elektrische Polarisation die durch die Überlagerung sehr vieler Dipole auf atomarer Skala hervorgerufen wird. Entscheidend ist dabei die räumliche Trennung von negativ geladenen Elektronen und positiv geladenen Atomkernen. Man erwartet ... mehr

  • Verbände

    Forschungsverbund Berlin e.V.

    Der Forschungsverbund Berlin e.V. (FVB) ist Träger von insgesamt acht natur-, lebens- und umweltwissenschaftlichen Forschungsinstituten in Berlin, die unter Wahrung ihrer wissenschaftlichen Eigenständigkeit im Rahmen einer einheitlichen Rechtspersönlichkeit gemeinsame Interessen wahrnehmen. ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.