Meine Merkliste
my.chemie.de  
Login  

Eine Billiardstel-Sekunde in Zeitlupe

Beobachtung und Kontrolle ultraschneller Prozesse mit Attosekunden-Auflösung

22.02.2018

Bernhardt Michael Mittermair / TUM

Messeinrichtung im Physik-Department der TU München.

Viele chemische Prozesse sind so schnell, dass nur ihr ungefährer Ablauf bekannt ist. Zur Aufklärung dieser Prozesse hat nun ein Team der Technischen Universität München (TUM) eine Methode mit einer Auflösung von Trillionstel-Sekunden entwickelt. Die neue Technik soll helfen, Prozesse wie die Photosynthese besser zu verstehen oder schnellere Computerchips zu entwickeln.

Ein wichtiger Teilschritt vieler chemischer Prozesse sind Ionisierungen. Ein typisches Beispiel dafür ist die Photosynthese. Diese Reaktionen dauern nur wenige Femto- (Billiardstel-Sekunden) oder sogar nur einige hundert Attosekunden (Trillionstel-Sekunden). Weil sie so extrem schnell ablaufen, sind zwar Anfangs- und Endprodukte der Reaktionen bekannt, nicht jedoch die Reaktionswege und Zwischenprodukte.

Um solche ultraschnellen Prozesse verfolgen zu können, braucht die Wissenschaft daher eine Messtechnik, die noch schneller ist als der beobachtete Prozess selbst. Dies ist mit der sogenannten „Pump-Probe Spektroskopie“ möglich.

Dabei wird die Probe von einem ersten Laserpuls angeregt und die Reaktion in Gang gesetzt. Ein zweiter, zeitversetzter Puls fragt dann den momentanen Zustand des Prozesses ab. Durch Wiederholungen der Reaktion mit unterschiedlichen Zeitverzögerungen ergeben sich viele einzelne Momentaufnahmen, die dann zu einem „Video“ zusammengesetzt werden können.

Mehr sehen mit dem Zweiten

Nun ist es Wissenschaftlern um Birgitta Bernhardt, ehemals Mitarbeiterin am Lehrstuhl für Laser- und Röntgenphysik der TU München und inzwischen Junior-Professorin am Institut für Angewandte Physik der Universität Jena, am Beispiel des Edelgases Krypton erstmals gelungen, zwei verschiedene Pump-Probe Spektroskopietechniken zu kombinieren und so die ultraschnellen Ionisierungsprozesse in zuvor nicht möglicher Genauigkeit sichtbar zu machen.

„Vor unserem Experiment konnte man entweder betrachten welcher Anteil des anregenden Lichtes über die Zeit von der Probe absorbiert wird oder messen welche und wie viele Ionentypen dabei entstehen“, erklärt Bernhardt. „Wir haben nun beide Techniken vereint und können auf diese Weise sehen, über welche genauen Schritte die Ionisierung abläuft, wie lange diese Zwischenprodukte bestehen bleiben und was genau der anregende Laserpuls in der Probe tut.“

Kontrolle ultraschneller Prozesse

Mit der Kombination der beiden Messtechniken können die Wissenschaftler nicht nur ultraschnelle Ionisierungsprozesse aufzeichnen. Durch die Variation der Intensität des zweiten, abfragenden Laserpulses können sie erstmals auch die Ionisierungsdynamik gezielt kontrollieren und auf diese Weise beeinflussen.

„Diese Kontrolle ist ein sehr starkes Instrument“, erklärt Bernhardt. „Wenn wir schnelle Ionisierungsprozesse genau nachvollziehen und sogar beeinflussen können, lernen wir viel Neues über lichtgesteuerte Prozesse wie die Photosynthese – gerade über jene ersten Momente, die diese komplexe Maschinerie in Gang setzen und die bislang kaum verstanden sind.“

Ultraschnelle Computer

Auch für die Entwicklung neuer, schnellerer Computerchips, in denen die Ionisierung von Silizium eine wesentliche Rolle spielt, ist die von Bernhardt und ihren Kollegen entwickelte Technik interessant. Kann man Ionisierungszustände von Silizium innerhalb eines so kurzen Zeitfensters nicht nur abfragen, sondern auch kontrolliert setzen – wie es die ersten Experimente am Krypton nahelegen – könnten Wissenschaftler dies vielleicht einmal nutzen, um neuartige und noch schnellere Computertechnologien zu entwickeln.

Fakten, Hintergründe, Dossiers
Mehr über TU München
  • News

    Tausend Mal schneller als Flash-Speicher

    Neuartige Phasenwechselmaterialien könnten tausend Mal schneller und dabei erheblich langlebiger sein als bisherige Flash-Speicherchips. Mithilfe der Forschungs-Neutronenquelle der Technischen Universität München (TUM) haben deutsche und US-amerikanische Forscher wichtige Erkenntnisse über ... mehr

    Clariant und TU München verleihen Dr. Karl Wamsler Innovation Award

    Clariant und die Technische Universität München (TUM) haben zum zweiten Mal den mit 50.000 Euro dotierten »Dr. Karl Wamsler Innovation Award« verliehen. Preisträger ist Prof. Stephen L. Buchwald, Ph.D., vom Massachusetts Institute of Technology (MIT). Der Award zeichnet Wissenschaftler für ... mehr

    Kohlefasern aus Treibhausgas

    Zusammen mit Forscherkollegen haben Chemiker der Technischen Universität München (TUM) einen Prozess entwickelt, der nach ersten Berechnungen eine wirtschaftliche Entfernung des Treibhausgases Kohlendioxid aus der Atmosphäre ermöglichen könnte. Der aktuellste Weltklimareport (IPCC Special R ... mehr

  • Videos

    Scientists pair up two stars from the world of chemistry

    Many scientists consider graphene to be a wonder material. Now, a team of researchers at the Technical University of Munich (TUM) has succeeded in linking graphene with another important chemical group, the porphyrins. These new hybrid structures could also be used in the field of molecular ... mehr

  • Veranstaltungen
    Startup-Event
    25.06.2019
    Garching bei M..., DE

    IKOM Start-Up 2019

    Start-Ups geben dem Arbeitsmarkt seit Jahren mehr Farbe. Sie bereichern ihn vor allem durch ihre neuen Geschäftsmodelle und frischen Ideen. Besonders in der IT-Branche dominieren sie seit Jahren das Bild. Von dieser Vielfalt inspiriert, wurde im Jahre 2013 die IKOM Start-Up ins Leben gerufe ... mehr

  • Universitäten

    Technische Universität München

    Mit ihren 13 Fakultäten und 460 Professoren bildet die TUM in 133 Studiengängen ca. 25.000 Studierende aus, davon 20 Prozent aus dem Ausland. Die Schwerpunktfelder sind die Ingenieur- und Naturwissenschaften, Medizin und Lebenswissenschaften sowie die Wirtschaftswissenschaften und Lehrerbil ... mehr

    Technische Universität München im Wissenschaftszentrum Straubing

    mehr

  • q&more Artikel

    Translation

    Die Struktur der chemischen und pharmazeutischen Großindustrie hat sich gewandelt. Traditionelle Zentralforschungsabteilungen, in denen grundlagennahe Wissenschaft ­betrieben wurde, sind ökonomischen Renditebetrachtungen zum Opfer gefallen. mehr

    Molekülgenaue ­Detektivarbeit

    Die drei Ausdrücke im Titel ebenso wie „Known Unknowns“ und „Unknown Unknowns“ sind eingedeutschte Schlagwörter, die derzeit die analytische Wasserszene durcheinanderwirbeln. Die Vorgehensweise in der Nutzung eben dieser Technologien ist jedoch häufig noch nicht ­einheitlich. mehr

    Renaissance der ­kleinen Moleküle

    Pyruvat, Succinat, Fumarat, Oxalacetat, Mevalonat und Hydroxymethylgluta­ryl-CoA – wer erinnert sich nicht an seine ­Biochemieprüfungen. Allosterische ­Regulation, Substrate, Produkte, Metabolite. Gene­rationen von Biochemikern haben uns die Grundlage für das Verständnis von Stoffwechselvor ... mehr

  • Autoren

    Prof. Dr. Arne Skerra

    Arne Skerra, Jg. 1961, studierte Chemie an der TU Darmstadt und wurde 1989 zum Dr. rer. nat. am GenZentrum der LMU München promoviert. Nach Stationen am MRC Laboratory of Molecular Biology in Cambridge, Großbritannien und am Max-Planck-Institut für Bio­physik in Frankfurt/M. wurde er 2004 P ... mehr

    Dr. Thomas Letzel

    Thomas Letzel, geb. 1970, studierte Chemie (1992–1998) an der TU München sowie der LMU München und promovierte 2001 mit einem umweltanalytischen Thema an der TU München und absolvierte im Anschluss einen zweijährigen Postdoc-Aufenthalt an der Vrijen Universiteit Amsterdam. 2009 habilitierte ... mehr

    Prof. Dr. Hannelore Daniel

    Hannelore Daniel, Jg. 1954, studierte Ernährungswissenschaft an der Justus-Liebig-Universität Gießen und promovierte 1982. 1989 habilitierte Sie sich für Physiologie und Biochemie der Ernährung. Danach war sie bis Ende 1992 an der School of Medicine der Universität Pittsburgh (USA) tätig un ... mehr

Mehr über Uni Jena
  • News

    Kupferverbindung als Recheneinheit in Quantencomputern

    Quantencomputer könnten die Fähigkeiten informationstechnischer Systeme enorm erweitern und somit die Welt verändern. Bis zum ersten tatsächlichen Gerät ist es allerdings noch ein weiter Weg, da vorhandene molekulare Konzepte bisher nicht in Technologien praktisch umgesetzt werden konnten. ... mehr

    Glasoberflächen kratzfest und bruchsicher

    Glück und Glas, wie leicht bricht das, sagt der Volksmund. Seine sprichwörtliche Zerbrechlichkeit wird Glas dabei gar nicht unbedingt zu Recht zugeschrieben. Denn: Gläser gehören zu den bruchfestesten Materialien, die mit modernen Technologien großtechnisch herstellbar sind. Zumindest in de ... mehr

    Liaison zwischen Schwefel und Kohlenstoff

    Nicht nur für die Erzeugung elektrischer Energie suchen Wissenschaftler nach neuen Wegen – auch für die Speicherung des Stroms müssen Alternativen gefunden werden, um Energie effizient und umweltfreundlich nutzen zu können. Auf der Suche nach der Batterie der Zukunft gilt es dabei vor allem ... mehr

  • Universitäten

    Friedrich-Schiller-Universität Jena

    In Jena ist nichts weit. Man kann im Grünen wohnen und in wenigen Minuten in der City sein – und umgekehrt. Die Grenzen sind fließend – urban wie intellektuell. Denn kurze Wege gibt es in Jena auch im übertragenen Sinne: durch persönliche Kontakte zwischen den Wissenschaftlern untereinander ... mehr

  • q&more Artikel

    Gene auf Zucker

    Der gezielte Transport von DNA und RNA mit Vektoren, meist aus synthetischen Polymeren, in Zellkulturen gehört mittlerweile zum festen Repertoire der biologischen Forschung und Entwicklung, was die Vielzahl an kommerziellen Kits zeigt. Allerdings gestalten sich bisher nicht nur viele Laborv ... mehr

    Sex oder Tod

    Diatomeen sind einzellige Mikroalgen, die aufgrund ihrer filigranen und reich verzierten mineralisierten Zellwand auch als Kieselalgen bezeichnet werden. Trotz ihrer mikroskopisch kleinen Zellen spielen ­diese Algen eine fundamentale ­Rolle für marine Ökosysteme und sind sogar zentrale Akte ... mehr

    Wertgebende Komponenten

    Die Isolierung bioaktiver Pflanzeninhaltsstoffe, ätherischer Öle bzw. pflanzlicher Farb- und Aromastoffe erfordert aufwändige und kostenintensive Verfahren. Oft ist jedoch für verschiedene Anwendungen eine Isolierung der Einzelkomponenten nicht erforderlich, es genügt deren Konzentrierung. ... mehr

  • Autoren

    Prof. Dr. Thomas Heinze

    Thomas Heinze, Jahrgang 1958, studierte Chemie an der FSU Jena, wo er 1985 promovierte und nach dem Postdoc an der Katholischen Universität Leuven (Belgien) 1997 habilitierte. 2001 folgte er dem Ruf auf eine Professur für Makromolekulare Chemie an die Bergische Universität Wuppertal. Seit 2 ... mehr

    Prof. Dr. Dagmar Fischer

    Dagmar Fischer ist approbierte Apothekerin und promovierte 1997 im Fach Pharmazeutische Technologie und Biopharmazie an der Philipps-Universität Marburg. Nach einem Aufenthalt am Texas Tech University Health Sciences Center, USA, sammelte sie mehrere Jahre Erfahrung als Leiterin der Präklin ... mehr

    Prof. Dr. Stefan H. Heinemann

    Stefan H. Heinemann, geb. 1960, studierte Physik an der Universität Göttingen. Nach zweijähriger Forschungszeit an der Yale University, New Haven, USA, promovierte er 1990 am Max-Planck-Institut für biophysikalische Chemie in Göttingen. Nach einem Forschungsaufenthalt an der Standford Unive ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.