Meine Merkliste
my.chemie.de  
Login  

Damit Bildschirme kräftiger leuchten

Weg zur Farbsteuerung von OLEDs entdeckt

27.03.2018

Dominic Raithel

Links ein Polymer mit gestrecktem Rückgrat (rot-gelb). Die langen Seitenarme (grau) der molekularen Bausteine bilden ein Gerüst, das die Streckung stabilisiert. Rechts ein Polymer mit gekrümmtem Rückgrat.

Organische Leuchtdioden (OLEDs) werden in Smartphones und TV-Geräten eingesetzt und unterstützen eine kontrastreiche Darstellung von Farben. In diesen Dioden werden als organische Halbleiter oft konjugierte Polymere eingesetzt. Forscher der Universität Bayreuth haben jetzt herausgefunden, wie die räumliche Struktur dieser Polymere genutzt werden kann, um die Farben der OLEDs zu steuern und Bildschirme noch besser zum Leuchten zu bringen.

Polymere mit Rückgrat: Räumliche Strukturen bestimmen die Farben des Lichts

Im Mittelpunkt der neuen Forschungsergebnisse stehen Polymere, die sich für den Einsatz in organischen Leuchtdioden eignen. Aufgrund der aneinander geketteten molekularen Bausteine besitzen sie ein Rückgrat. Werden die Polymere nun einem Laserstrahl ausgesetzt, absorbieren sie das Licht und speichern es als Anregungsenergie. Diese Energie breitet sich an ihrem Rückgrat entlang aus. Kurz darauf wird sie durch Abstrahlung von Licht freigesetzt.

Bisher ist man davon ausgegangen, dass die Farbe des abgestrahlten Lichts davon abhängig sei, wie weit sich die Anregungsenergie in den Polymeren ausbreitet: Der Bereich, in dem sich die Energie ausdehnt, sei umso kleiner, je stärker die Polymere gekrümmt sind, hieß es. Doch die Bayreuther Wissenschaftler haben diese Annahmen jetzt widerlegt. Die von ihnen untersuchten Polymere haben ein chemisch identisches Rückgrat und sind unterschiedlich gekrümmt, aber die Anregungsenergie dehnt sich über gleich große Bereiche aus. Gekrümmte Polymere senden grünes oder blaues Licht aus, gestreckte Polymere strahlen gelb oder rötlich. „Wenn diese Polymere in organischen Leuchtdioden zum Einsatz kommen, können ihre unterschiedlichen räumlichen Strukturen genutzt werden, um die Farben des von den OLEDs abgestrahlten Lichts präzise zu steuern“, erklärt der Physiker Dominic Raithel M.Sc.

Wie die Bayreuther Forscher ebenfalls herausgefunden haben, besitzen gestreckte Polymere ein von ihren Seitenarmen gebildetes Gerüst, das die Streckung stabilisiert. „Daraus ergibt sich für Leuchtdioden ein besonderer Vorteil: Wenn gestreckte Polymere übereinander geschichtet werden, sorgen die Gerüste für Stabilität. Die Lichtemission wird dadurch nicht geschwächt“, sagt Raithel. Vor kurzem hat er seine Dissertation im DFG-Graduiertenkolleg „Photophysics of Synthetic and Biological Multichromophoric Systems“ der Universität Bayreuth abgeschlossen. Hier werden natürliche und künstliche organische Materialien in enger interdisziplinärer Zusammenarbeit erforscht. So waren an der neuen Studie sowohl die Experimentalphysiker Prof. Dr. Anna Köhler und Prof. Dr. Jürgen Köhler als auch Prof. Dr. Mukundan Thelakkat als Experte für Funktionspolymere beteiligt.

Transatlantisches Zusammenspiel von Theorie und Experiment

Bei den vergleichenden experimentellen Untersuchungen der Polymere kamen verschiedene Spektroskopieverfahren zum Einsatz. „Entscheidend war dabei die Einzelmolekülspektroskopie bei sehr tiefen Temperaturen, für die uns hier in Bayreuth eine hochleistungsfähige Infrastruktur zur Verfügung steht. Mit dieser Methode konnten wir die Farben des emittierten Lichts und schließlich auch die Ausdehnung der Anregungsenergie über die kettenförmig aufgebauten Polymere bestimmen“, erklärt Dr. Richard Hildner, der die Forschungsarbeiten an der Universität Bayreuth koordiniert hat.

Die Bayreuther Wissenschaftler haben eng mit einer Arbeitsgruppe an der Rice University in Houston/Texas zusammengearbeitet. Hier wurden von Dr. Lena Simine und Prof. Dr. Peter J. Rossky umfangreiche Berechnungen zum Einfluss der Polymerstrukturen auf die Farbe des emittierten Lichts angestellt. Die Verbindung von experimentellen mit theoretischen Methoden führte schließlich zu Einblicken in die räumliche Struktur einzelner Polymerketten, die mit herkömmlichen bildgebenden Verfahren nicht möglich sind.

Fakten, Hintergründe, Dossiers
  • Funktionspolymere
  • Polythiophene
Mehr über Uni Bayreuth
  • News

    Eis unter Hochdruck: Erstmals Strukturwandel von Eiskristallen beobachtet

    Eiswürfel im Kühlschrank oder Eiszapfen an der Dachrinne sind vertraute Alltagsbeispiele für gefrorenes Wasser. Physikalisch gesehen, handelt es sich dabei um eine von insgesamt 17 bekannten Arten von Eis. Diese unterscheiden sich durch ihre Kristallstrukturen und Entstehungsbedingungen und ... mehr

    Neue Stickstoffverbindungen eröffnen neue Möglichkeiten der Energiespeicherung

    Ein internationales Forschungsteam unter der Leitung von Wissenschaftlern der Universität Bayreuth hat erstmals chemische Verbindungen hergestellt, die Polymerketten enthalten, die nur aus Stickstoff aufgebaut sind. Derartige Nitride besitzen eine ungewöhnlich hohe Energiedichte und eröffne ... mehr

    WITec Paper Award 2018 vergeben

    Jedes Jahr zeichnet die Raman Imaging Firma WITec (Ulm) drei wissenschaftliche Publikationen aus, die in Peer-Reviewed Zeitschriften erschienen sind und hinsichtlich ihrer Originalität sowie der Bedeutung der Ergebnisse herausragen. Außerdem müssen zumindest einige der Daten unter Verwendun ... mehr

  • Universitäten

    Universität Bayreuth

    Die Universität Bayreuth ist eine international operierende, kooperations- und schwerpunktorientierte Forschungsuniversität mit innovationsfähigen Strukturen. Durch Forschung, Lehre und Weiterbildung dient sie dem wissenschaftlichen Fortschritt und einer wissenschaftsbezogenen Ausbildung. I ... mehr

  • q&more Artikel

    Authentische Lebensmittel

    Authentische Lebensmittel erfreuen sich bei Konsumenten zunehmender Beliebtheit. Ein regionales, sortenreines und/oder speziell hergestelltes Produkt ist in einem stark industrialisierten Markt in steigendem Maß ein Garant für mehr Wertschöpfung. Gerade im Premiumsegment lassen sich durch ö ... mehr

    Mehr als Honig?

    Seit Jahrtausenden ist „Honig“ ein Inbegriff für ein naturbelassenes und gesundes Lebensmittel. Dementsprechend erfreut sich Honig auch bei Konsumenten steter Beliebtheit – gerade in Zeiten, in denen biologische Lebensmittel und eine gesunde Lebensweise aktueller sind als je zuvor. mehr

    Extraportion Zink

    Mächtige Unterarme, Pfeife im Mund, Matrosenhut. In Sekundenschnelle ist die Dose Spinat geöffnet und ­geleert. Mit nun übermenschlicher Kraft geht es in die nächste Rauferei. So kennen wir Popeye, den Seemann. Das Geheimnis seiner Stärke ist der hohe Eisengehalt von Spinat. Mit dieser Vors ... mehr

  • Autoren

    Dr. Christopher Igel

    Jg. 1990, absolvierte von 2009 bis 2013 sein Bachelor-Studium in Biochemie an der Universität Bayreuth. Die Bachelorarbeit zum Thema „Honiganalytik mittels NMR“ fertigte er am Forschungszentrum BIOmac unter der Leitung von Prof. Dr. Schwarzinger an. mehr

    Wolfrat Bachert

    Jg. 1987, begann zunächst ein Studium des Maschinen­baustudium an der TU Dresden, eher er 2009 zum Studium der Biologie an die ­Universität Bayreuth wechselte, wo er 2013 am Lehrstuhl für Biochemie unter der Leitung von Prof. Dr. Wulf Blankenfeldt seine Bachelorarbeit zum Thema „Charakteri­ ... mehr

    Christopher Synatschke

    Christopher Synatschke hat an der Universität Bayreuth und der University of New South Wales, Sydney Chemie mit Schwerpunkt Polymerforschung studiert und ist seit 2009 Doktorand in der Arbeitsgruppe von Prof. Axel H. E. Müller an der Universität Bayreuth. Seine Forschungsinteressen sind die ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.