Meine Merkliste
my.chemie.de  
Login  

Gedruckte »in-situ« Perowskitsolarzellen – ressourcenschonend und lokal produzierbar

18.05.2018

© Fraunhofer ISE

In-situ Befüllung einer gedruckten Perowskit­solarzelle am Fraunhofer ISE.

Die Photovoltaik (PV) ist eine der Hauptsäulen einer nachhaltigen Energieversorgung auf Basis erneuerbarer Energien. Neben der momentan dominierenden Silicium-basierten PV bieten auch alternative Materialien wie Perowskite ein großes Potenzial. Für solch neue Solarzellentypen prüfen Wissenschaftler gänzlich neue Konzepte auf ihre Machbarkeit. Ein sehr innovativer Ansatz, um Solarzellen noch ressourcenschonender herstellen zu können, besteht darin, die Anzahl an Produktionsschritten durch Umkehrung des Herstellungsablaufes drastisch zu reduzieren. Dafür entwickelte das Fraunhofer-Institut für Solare Energiesysteme ISE das »in-situ«-Konzept für gedruckte Perowskitsolarzellen.

Mit einem Rekord-Wirkungsgrad von 12,6 % haben die Forscher hiermit jetzt einen wichtigen Meilenstein für gedruckte Photovoltaik erreicht.

Solarzellen aus Silicium dominieren heute den Photovoltaik-Weltmarkt. Ihre Produktion besteht aus einer Vielzahl von Einzelprozessschritten, von der Synthese des photoaktiven Materials und der Herstellung der Solarzellen bis hin zur elektrischen Verschaltung und Versiegelung des fertigen Solarmoduls. Mit dem Material Perowskit und dem Ziel, Produktionsschritte einzusparen, haben sich am Fraunhofer ISE in Freiburg Forscher einer Arbeitsgruppe um Dr. Andreas Hinsch die Frage gestellt: Warum nicht die Herstellung einer Solarzelle so umkehren, dass zuerst das Solarmodul vorgefertigt wird und anschließend das eigentliche photovoltaische Material eingefüllt und direkt vor Ort – lateinisch »in-situ« – aktiviert wird? »Jetzt ist es uns zum ersten Mal gelungen, mit dem aktuell intensiv beforschten Photovoltaikmaterial Perowskit, einem photoaktiven Salz, gedruckte Solarzellen mit einem Wirkungsgrad von 12,6 % in-situ herzustellen«, freut sich Andreas Hinsch und fügt hinzu: »Damit ist ein erster wichtiger Meilenstein erreicht, um die Aufskalierung und die Überführung dieser Technologie in die industrielle Produktion sinnvoll vorantreiben zu können.« Nebenbei stellt dieser zertifiziert gemessene Labor-Wirkungsgrad auch einen Rekordwert für gedruckte Solarzellen im Allgemeinen dar.

Gedruckte Elektroden verbinden sich mit Perowskiten

Die für gedruckte »in-situ«-Perowskitsolarzellen auf kleinen Flächen entwickelte Methode und die erzielten Resultate bilden die Grundlage für die Untersuchung der Aufskalierbarkeit. Ziel der aktuellen Projekte ist es, druckbare nanopörose Elektrodenschichten zur inneren Abscheidung und Ankopplung der Perowskitkristalle zu entwickeln, die Homogenität des Abscheideprozesses zu optimieren und hohe solare Wirkungsgrade in den fertigen Zellen nachzuweisen. Dabei werden die Prozessschritte »Siebdruck der Elektrodenschichten« und »Aktivierung des Perowskits« optimiert. Die Dicke der späteren photovoltaisch aktiven Schicht liegt unter einem Mikrometer.

Entscheidend für den solaren Wirkungsgrad ist die Kontrolle des Abscheideprozesses der Perowskitkristallite im Inneren der nano-porösen Elektroden, die aus Metalloxiden und mikronisiertem Graphit bestehen. Neu beim Ansatz der Forscher um Andreas Hinsch ist das Verfahren zur Befüllung der ansonsten fertigen Zelle mit dem Perowskit und dessen anschließender Kristallisation. Während bisher übliche Verfahren zu einem unkontrollierten Kristallwachstum führten, haben die Forscher des Fraunhofer ISE einen Weg gefunden, das Perowskit mittels eines polaren Gases in ein bei Raumtemperatur geschmolzenes Salz umzuwandeln und so die Poren der Elektroden zu füllen. Die anschließende Desorption des Gases erhöht den Schmelzpunkt stark und bewirkt die Kristallisation. Das Ergebnis ist ein homogener Wachstumsprozess. Solcherart hergestellte photoaktive Schichten weisen eine hohe Photospannung von 1 Volt auf und erzielen den für »in-situ« Laborzellen (0.1 cm2) mit Graphitelektrode zertifizierten stabilisierten solaren Wirkungsgrad von 12,6 %. Die Fraunhofer-Forscher erwarten eine weitere Steigerung des Wirkungsgrads ihrer gedruckten »in-situ« Perowskitsolarzellen, nicht zuletzt deshalb, weil das verwendete Perowskitmaterial, wie in der wissenschaftlichen Literatur für nicht-skalierbare Laborzellen berichtet, bereits solare Wirkungsgrade von 22 % gezeigt hat.

Ressourcenschonend und lokal produzierbar

Neben den zu erwartenden günstigen Kosten für die am Fraunhofer ISE entwickelte neuartige Perowskitsolarzelle spielen auch Nachhaltigkeit und Komplexität des Herstellungsprozesses eine Rolle. In den letzten Jahren sind aufgrund des schnellen Ausbaus der Produktionskapazitäten für bestehende Technologien die Kosten der Photovoltaik stark gefallen. Neben der Fokussierung auf weitere Kostensenkung spielt heute vermehrt der Aspekt der Nachhaltigkeit eine wichtige Rolle. Die insgesamt noch junge Technologie Photovoltaik hat noch Verbesserungspotenzial beim Energie- und Rohstoffverbrauch. Hierzu müssen Materialien und Konzepte entwickelt werden, die mittel- bis längerfristig Alternativen bieten können.

Ziel der weltweit einmaligen Forschungsarbeiten des Fraunhofer ISE an effizienten »in-situ« Solarzellen ist es, eine möglichst ressourcenschonende, lokal produzierbare Photovoltaik zu ermöglichen. Die Verarbeitungsschritte der jetzt mit 12,6 % Wirkungsgrad erfolgreichen gedruckten Perowskitsolarzelle ähneln jenen der Glasverarbeitung. Daher ist eine Herstellung über dezentrale Wege mit lokalen Produktionsstätten nicht nur in hochtechnisierten Standorten, sondern auch unter einfachen Infrastrukturbedingungen realisierbar. Durch die Verwendung von preiswertem Graphit und leicht synthetisierbarem Perowskit reduzieren sich die Materialkosten fast auf die Kosten der Glassubstrate. Für die spätere Vermarktung dieser Form von gedruckten »in-situ« Perowskitsolarzellen könnte also das Geschäftsmodell der glasproduzierenden und verarbeitenden Industrie übernommen werden. Dies bedeutet, dass aufgrund der niedrigen Materialkosten die Transportkosten anteilsmäßig den Verkaufspreis so erhöhen, dass lokale Produktion und Vertrieb gegenüber einer zentralisierten Herstellung global gesehen konkurrenzfähiger werden.

Fakten, Hintergründe, Dossiers
Mehr über Fraunhofer-Institut ISE
Mehr über Fraunhofer-Gesellschaft
  • News

    Mikro-Energiesammler für das Internet der Dinge

    Dünne organische Schichten können Maschinen und Geräten neue Funktionen verleihen. Zum Beispiel ermöglichen sie winzig kleine Energierückgewinner. Die sollen in Zukunft auf Rohren oder anderen Oberflächen angebracht werden, um bisher vergeudete Abwärme in Strom umzuwandeln. Experten vom Fra ... mehr

    Mehr Reichweite für Elektrofahrzeuge: Traktionsbatterie speichert thermische Energie

    In Zeiten anstehender Fahrverbote werden batterieelektrische Fahrzeuge (BEV) immer interessanter. Deren Reichweite schwangt jedoch vor allem bei niedrigen Umgebungstemperaturen. Innerhalb des EU-Projekts OPTEMUS wurden eine Vielzahl effizienzsteigernder Technologien entwickelt, um so insbes ... mehr

    OLED-Integration in Textilien: funktionell und auffallend

    Organische Leuchtdioden (OLED) kennt man vor allem von Fernsehern und Smartphone-Displays. Als Beleuchtungsobjekt findet man sie in Auto-Rücklichtern oder Leuchten. Das Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP als Partner für kundenspezifische O ... mehr

  • Videos

    Effektive Abwasserreinigung durch Nanofiltration

    Wasser ist lebenswichtig – Abwässer müssen daher möglichst effizient gereinigt werden. Möglich machen das keramische Membranen, mit denen erstmalig 200 Dalton kleine Moleküle abtrennbar sind. Dieses Video zeigt, dass sich hiermit auch Industrie-Abwässer effizient reinigen lassen.Dr. rer. na ... mehr

    Flüssigkristalle als Schmierstoffe

    Schmierstoffe sind fast überall im Einsatz – in Motoren, Produktionsmaschinen, Getrieben, Ventilen. Obwohl sie in nahezu allen Maschinen für einen ruhigen Lauf sorgen, gab es auf diesem Gebiet in den vergangenen beiden Jahrzehnten keine grundlegenden Innovationen. Das Fraunhofer-Institut fü ... mehr

    Briefkontrolle mit Terahertz-Wellen

    Bislang ist es recht aufwändig, Briefe sicher und zuverlässig auf gefährliche Inhaltsstoffe wie Sprengstoffe oder Drogen hin zu untersuchen. Abhilfe könnte ein neuer Terahertz-Scanner schaffen. Forscher des Fraunhofer-Instituts für Physikalische Messtechnik IPM in Kaiserslautern und der Hüb ... mehr

  • Forschungsinstitute

    Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.

    Die Fraunhofer-Gesellschaft ist die führende Organisation für angewandte Forschung in Europa. Unter ihrem Dach arbeiten 59 Institute an über 40 Standorten in ganz Deutschland. Rund 17 000 Mitarbeiterinnen und Mitarbeiter erzielen das jährliche Forschungsvolumen von 1,5 Mrd Euro. Davon erwir ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.