Meine Merkliste
my.chemie.de  
Login  

Sensoren auf Gummibärchen gedruckt

Mikroelektroden-Arrays können auf Gelatine und andere weiche Materialien gedruckt werden

22.06.2018

N. Adly / TUM

Mikroelektroden-Arrays auf Gelatine: Ein Team um Prof. Wolfrum hat die Sensoren auf Gummi-Süßigkeiten gedruckt.

Mit Mikroelektroden können elektrische Signale direkt am Gehirn oder Herz gemessen werden. Für solche Anwendungen werden jedoch weiche Materialien benötigt, auf denen die Elektroden bislang nur mit großem Aufwand angebracht werden konnten. Einem Team der Technischen Universität München (TUM) ist es jetzt gelungen, sie direkt auf verschiedene weiche Oberflächen zu drucken.

Mit vereinten Kräften ist es einem Team der TU München und des Forschungszentrums Jülich gelungen, ein Gummibärchen zu bedrucken. Was zunächst bestenfalls nach einer Spielerei klingt, könnte die medizinische Diagnostik verändern. Zum einen haben die Wissenschaftler um Prof. Bernhard Wolfrum kein Bild oder einen Schriftzug gedruckt, sondern ein Mikroelektroden-Array. Diese Bauteile bestehen aus einer großen Zahl an Elektroden und können Veränderungen der elektrischen Spannung in Zellen messen. Diese treten beispielsweise bei der Aktivität von Nerven- oder Muskelzellen auf.

Zum anderen haben Gummibärchen eine Eigenschaft, die für den Einsatz von Miroelektroden-Arrays an lebenden Zellen besonders wichtig sind: Sie sind weich. Mikroelektroden-Arrays gibt es schon lange. In ihrer ursprünglichen Form bestehen sie aus harten Materialien wie Silizium. Im Kontakt mit lebenden Zellen ergeben sich daraus verschiedene Nachteile. Im Labor verändern sich deshalb Form und Zusammenschluss der Zellen. Im Körper können sie Entzündungen auslösen und die Funktionsweise von Organen beeinträchtigen.

Rapid Prototyping mit Tintenstrahldrucker

Mit Elektroden-Arrays auf weichen Materialien lassen sich diese Probleme vermeiden. Dementsprechend intensiv wird an ihnen geforscht. Bislang wird dabei meist auf traditionelle Methoden gesetzt, die relativ langwierig sind und auf kostspielige Speziallabore angewiesen sind. „Druckt man die Elektroden stattdessen, kann man vergleichsweise schnell und günstig einen Prototyp herstellen und ihn ebenso problemlos überarbeiten“, sagt Bernhard Wolfrum, Professor für Neuroelektronik an der TUM. „Solch ein ‚Rapid Prototyping‘ erlaubt ganz neue Arbeitsweisen.“

Wolfrum und sein Team nutzen eine Hightech-Variante des Tintenstrahldruckers. Die Elektroden selbst werden mit kohlenstoffhaltiger Flüssigkeit gedruckt. Damit die Sensoren keine ungewollten Signale aufzeichnen, wird über die Kohlenstoffbahnen eine neutrale Schutzschicht aufgetragen.

Materialien für verschiedene Anwendungen

Das Verfahren erprobten die Forscher an verschiedenen Materialien, darunter das weiche Silikon PDMS (kurz für Polydimethylsiloxan), die häufig in biologischen Experimenten verwendete Substanz Agar und schließlich Gelatine, unter anderem in Form eines geschmolzenen und wieder erstarrten Gummibärchens. Jeder dieser Stoffe hat Eigenschaften, die sich für bestimmte Anwendungen besonders eignen. Beispielsweise können mit Gelatine beschichtete Implantate, unerwünschte Reaktionen im Gewebe verringern.

Dass die Sensoren zuverlässige Werte liefern, konnte das Team durch Experimente mit Zellkulturen nachweisen. Mit einer durchschnittlichen Breite von 30 Mikrometern ermöglichen sie darüber hinaus Messungen an einzelnen oder wenigen Zellen, was mit etablierten Druckmethoden schwierig zu erreichen ist.

„Die Schwierigkeit besteht im Feintuning aller Komponenten – sowohl der technischen Einstellungen des Druckers als auch der Zusammensetzung der Tinte“, sagt Nouran Adly, Erstautorin der Studie. „Im Fall von PDMS mussten wir beispielsweise auf einer von uns entwickelte Vorbehandlung zurückgreifen, damit die Tinte überhaupt auf der Oberfläche hält.“

Vielfältige Einsatzmöglichkeiten

Gedruckte weiche Mikroelektroden-Arrays könnten in verschiedenen Bereichen zum Einsatz kommen. Sie eignen sich nicht nur für einen Rapid-Prototyping-Ansatz in der Forschung, sondern könnten auch die Behandlung von Patienten verändern. „In Zukunft könnten ähnliche weiche Strukturen beispielsweise Nerven- oder Herzfunktion im Körper überwachen oder sogar als Schrittmacher dienen“, sagt Prof. Wolfrum. Derzeit arbeitet er mit seinem Team zum einen daran, auch komplexere, dreidimensionale Mikroelektroden-Arrays zu drucken. Zum anderen erforschen sie druckbare Sensoren, die nicht auf Spannungsschwankungen, sondern selektiv auf chemische Substanzen reagieren.

Fakten, Hintergründe, Dossiers
  • Mikroelektroden
  • Gelatine
  • Drucktechnologien
  • Mikroelektrodenarrays
  • Rapid Prototyping
  • Tintenstrahldrucker
Mehr über TU München
  • News

    Kohlefasern aus Treibhausgas

    Zusammen mit Forscherkollegen haben Chemiker der Technischen Universität München (TUM) einen Prozess entwickelt, der nach ersten Berechnungen eine wirtschaftliche Entfernung des Treibhausgases Kohlendioxid aus der Atmosphäre ermöglichen könnte. Der aktuellste Weltklimareport (IPCC Special R ... mehr

    Die Götter der kleinen Dinge

    Äußerlich sieht der Cluster aus 55 Kupfer- und Aluminiumatomen aus wie ein Kristall, chemisch hat er jedoch die Eigenschaften eines Atoms. Das hetero-metallische Superatom, das Chemikerinnen und Chemiker der Technischen Universität München (TUM) hergestellt haben, schafft die Voraussetzung ... mehr

    Die Attosekunden-Stoppuhr

    Ultrakurze, hochintensive Röntgenblitze öffnen das Tor zu den Grundlagen chemischer Reaktionen. Freie-Elektronen-Laser erzeugen solche Pulse, doch es gibt ein Problem: Die Pulse variieren in Länge und Energie. Ein internationales Forschungsteam präsentiert nun eine Lösung: Ein Ring aus 16 D ... mehr

  • Videos

    Scientists pair up two stars from the world of chemistry

    Many scientists consider graphene to be a wonder material. Now, a team of researchers at the Technical University of Munich (TUM) has succeeded in linking graphene with another important chemical group, the porphyrins. These new hybrid structures could also be used in the field of molecular ... mehr

  • Veranstaltungen
    Startup-Event
    25.06.2019
    Garching bei M..., DE

    IKOM Start-Up 2019

    Start-Ups geben dem Arbeitsmarkt seit Jahren mehr Farbe. Sie bereichern ihn vor allem durch ihre neuen Geschäftsmodelle und frischen Ideen. Besonders in der IT-Branche dominieren sie seit Jahren das Bild. Von dieser Vielfalt inspiriert, wurde im Jahre 2013 die IKOM Start-Up ins Leben gerufe ... mehr

  • Universitäten

    Technische Universität München

    Mit ihren 13 Fakultäten und 460 Professoren bildet die TUM in 133 Studiengängen ca. 25.000 Studierende aus, davon 20 Prozent aus dem Ausland. Die Schwerpunktfelder sind die Ingenieur- und Naturwissenschaften, Medizin und Lebenswissenschaften sowie die Wirtschaftswissenschaften und Lehrerbil ... mehr

    Technische Universität München im Wissenschaftszentrum Straubing

    mehr

  • q&more Artikel

    Translation

    Die Struktur der chemischen und pharmazeutischen Großindustrie hat sich gewandelt. Traditionelle Zentralforschungsabteilungen, in denen grundlagennahe Wissenschaft ­betrieben wurde, sind ökonomischen Renditebetrachtungen zum Opfer gefallen. mehr

    Molekülgenaue ­Detektivarbeit

    Die drei Ausdrücke im Titel ebenso wie „Known Unknowns“ und „Unknown Unknowns“ sind eingedeutschte Schlagwörter, die derzeit die analytische Wasserszene durcheinanderwirbeln. Die Vorgehensweise in der Nutzung eben dieser Technologien ist jedoch häufig noch nicht ­einheitlich. mehr

    Renaissance der ­kleinen Moleküle

    Pyruvat, Succinat, Fumarat, Oxalacetat, Mevalonat und Hydroxymethylgluta­ryl-CoA – wer erinnert sich nicht an seine ­Biochemieprüfungen. Allosterische ­Regulation, Substrate, Produkte, Metabolite. Gene­rationen von Biochemikern haben uns die Grundlage für das Verständnis von Stoffwechselvor ... mehr

  • Autoren

    Prof. Dr. Arne Skerra

    Arne Skerra, Jg. 1961, studierte Chemie an der TU Darmstadt und wurde 1989 zum Dr. rer. nat. am GenZentrum der LMU München promoviert. Nach Stationen am MRC Laboratory of Molecular Biology in Cambridge, Großbritannien und am Max-Planck-Institut für Bio­physik in Frankfurt/M. wurde er 2004 P ... mehr

    Dr. Thomas Letzel

    Thomas Letzel, geb. 1970, studierte Chemie (1992–1998) an der TU München sowie der LMU München und promovierte 2001 mit einem umweltanalytischen Thema an der TU München und absolvierte im Anschluss einen zweijährigen Postdoc-Aufenthalt an der Vrijen Universiteit Amsterdam. 2009 habilitierte ... mehr

    Prof. Dr. Hannelore Daniel

    Hannelore Daniel, Jg. 1954, studierte Ernährungswissenschaft an der Justus-Liebig-Universität Gießen und promovierte 1982. 1989 habilitierte Sie sich für Physiologie und Biochemie der Ernährung. Danach war sie bis Ende 1992 an der School of Medicine der Universität Pittsburgh (USA) tätig un ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.