Meine Merkliste
my.chemie.de  
Login  

Mit Quantencomputer chemische Bindungen simuliert

25.07.2018

IQOQI Innsbruck/Harald Ritsch

Die Wissenschaftler simulierten mit einem Quantencomputer die Energiezustände der Bindungen von molekularem Wasserstoff und Lithiumhydrid.

Eine internationale Forschungsgruppe hat in Innsbruck die weltweit erste quantenchemische Simulation auf einem Ionenfallen-Quantencomputer durchgeführt. Die Quantensimulation von chemischen Prozessen könnte in Zukunft viele Probleme in der Chemie lösen helfen und so zum Beispiel neue Impulse für die Materialwissenschaft, Medizin und Industriechemie geben.

In dem Experiment am Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften untersuchten die Wissenschaftler um Cornelius Hempel und Thomas Monz einen vielversprechenden Weg zur Modellierung chemischer Bindungen und Reaktionen mit Hilfe von Quantencomputern. „Selbst die größten Supercomputer haben Mühe, alles andere als die einfachste Chemie zu modellieren. Quantencomputer, die die Natur simulieren, erschließen hier eine völlig neue Möglichkeit, Materie zu verstehen. Sie geben uns ein neues Werkzeug an die Hand, um Probleme in der Materialwissenschaft, Medizin und Industriechemie mit Hilfe von Simulationen zu lösen“, sagt Cornelius Hempel, der 2016 vom IQOQI an die University of Sydney ging. Da Quantencomputer noch in den Kinderschuhen stecken, bleibt unklar, welche Probleme diese Geräte am effektivsten lösen werden können, aber viele sind sich einig, dass die Quantenchemie eine der ersten „Killer-Apps“ dieser neuen Technologie sein wird.

Breite Anwendung für Quantenchemie

Die Quantenchemie versucht die komplizierten Bindungen und Reaktionen von Molekülen mit Hilfe der Quantenmechanik zu verstehen. Viele Details von chemischen Prozessen können selbst mit den größten und schnellsten Supercomputern nicht simuliert werden. Durch die Modellierung dieser Prozesse mit Hilfe von Quantencomputern erwarten die Wissenschaftler ein besseres Verständnis. Damit könnten Wege für chemische Reaktionen erschlossen werden, die weniger Energie benötigen, und die Entwicklung neuer Katalysatoren ermöglichen. Dies hätte enorme Auswirkungen auf die Industrie, wie zum Beispiel in der Produktion von Düngemitteln. Weitere mögliche Anwendungen sind die Entwicklung organischer Solarzellen und besserer Batterien durch verbesserte Materialien sowie die Nutzung neuer Erkenntnisse bei der Entwicklung personalisierter Medikamente.

Einfache chemische Bindung simuliert

Am Institut für Quantenoptik und Quanteninformation in Innsbruck verwendeten die Wissenschaftler einen Ionenfallen-Quantencomputer mit 20 Quantenbits und simulierten auf bis zu vier Quantenbits die Energiezustände der Bindungen von molekularem Wasserstoff und Lithiumhydrid. „Wir haben diese relativ einfachen Moleküle gewählt, weil sie bereits sehr gut verstanden werden und mit klassischen Computern simuliert werden können“, sagt Thomas Monz vom Institut für Experimentalphysik der Universität Innsbruck. „So können wir die Ergebnisse der Quantencomputer direkt überprüfen und gewinnen wichtige Erfahrungen für deren Weiterentwicklung.“ Cornelius Hempel ergänzt: „Dies ist ein wichtiger Schritt in der Entwicklung dieser Technologie, bei dem wir Vergleichsmaßstäbe setzen, nach Fehlern suchen und notwendige Verbesserungen planen können.“ Anstatt die bisher genaueste oder größte Simulation anzustreben, konzentrierte sich das Team auf das, was in einem vielversprechenden quantenklassischen Hybrid-Algorithmus, dem sogenannten Variational Quantum Eigensolver oder VQE, schief gehen kann. Indem sie verschiedene Wege untersuchten, wie die chemische Fragestellung im Quantencomputer kodiert werden kann, analysierten die Forscher die Möglichkeiten, wie Fehler, die in den heute noch unvollkommenen Geräten unweigerlich auftreten und deren Nutzung in naher Zukunft noch im Wege stehen, unterdrückt werden können. „Neben den supraleitenden Quantenbits ist die Ionenfallen-Technologie die führende Plattform für die Entwicklung eines Quantencomputers“, sagt der Innsbrucker Quantencomputer-Pionier Rainer Blatt. „Die Quantenchemie ist ein Beispiel, wo sich die Vorteile eines Quantencomputers schon sehr bald in konkreten Anwendungen zeigen werden.“

Fakten, Hintergründe, Dossiers
  • Quantencomputer
  • Quantenchemie
  • Ionenfallen
  • Quantenbits
  • Quantenoptik
  • Quantenmechanik
  • chemische Reaktionen
  • Lithiumhydrid
Mehr über Universität Innsbruck
  • News

    Bindungsbruch: Mitmachen oder nicht?

    Ob und wie sich chemische Reaktionen durch gezielte Schwingungsanregung der Ausgangsstoffe beeinflussen lassen, untersuchen Physiker um Roland Wester an der Universität Innsbruck. Sie konnten nun demonstrieren, dass die Anregung mit einem Laserstrahl die Effizienz einer chemischen Austausch ... mehr

    Verschränkte Atome leuchten im Gleichklang

    Einem Team um Experimentalphysiker Rainer Blatt ist es gelungen, die Quantenverschränkung zweier räumlich getrennter Atome durch die Beobachtung ihrer Lichtemission zu charakterisieren. Dieses grundlegende Experiment könnte zur Entwicklung hochempfindlicher optischer Gradiometer zur präzise ... mehr

    Neue Form von Eis entdeckt

    Eis ist nicht gleich Eis. Abhängig von Druck und Temperatur bilden Wassermoleküle unterschiedliche Strukturen aus, insgesamt siebzehn kristalline Eisformen konnten bisher nachgewiesen werden. Ein Team um den Innsbrucker Chemiker Thomas Lörting hat gemeinsam mit Forschern der TU Dortmund nun ... mehr

  • Videos

    Physik: Quantensysteme kontrollieren

    Wie wird die Erde der Zukunft aussehen? Technologie wird zum Einsatz kommen, die uns Menschen ungeahnte Möglichkeiten geben wird. Einen wesentlichen Beitrag dazu liefert die Quantenphysik. In Innsbruck arbeiten Wissenschaftler heute schon an den Grundlagen der Welt von Übermorgen, am Instit ... mehr

    Chemie: Pollen mit flexibler Wirkung

    Wenn im Frühling die Bäume blühen, dann leiden Allergiker an Heuschnupfen. Jeder fünfte Mitteleuropäer ist beispielsweise auf Birkenpollen allergisch. Pollen sind mikroskopisch kleine, kugelige Gebilde. Sie sind unter anderem aus verschiedenen Eiweißbausteinen aufgebaut, und einige dieser P ... mehr

  • Universitäten

    Universität Innsbruck

    Die Universität Innsbruck wurde 1669 gegründet und ist heute mit zirka 27.000 Studierenden und über 4.000 Mitarbeiterinnen und Mitarbeitern die größte und wichtigste Forschungs- und Bildungseinrichtung in Westösterreich. Im Herzen der Alpen gelegen, bietet die Universität Innsbruck beste Be ... mehr

  • q&more Artikel

    Wissen statt Nichtwissen

    Biologie ist naturgemäß komplex und selbst die Ergebnisse einfachster biochemischer Experimente sind mit nicht zu vernachlässigendem experimentellen Rauschen behaftet. Biochemische Messungen sind jedoch das Rückgrat moderner Pharmaforschung. Wird die experimentelle Unsicherheit bei der Plan ... mehr

  • Autoren

    Prof. Dr. Christian Kramer

    Jg. 1980, studierte Molecular Sciences in Erlangen und Zürich. Er promovierte von 2007–2009 an der Universität Erlangen in enger Zusammenarbeit mit Boehringer-Ingelheim/Biberach über neue QSAR- und QSPR-Methoden zu statistischen Vorhersagen von physikochemischen und biochemischen Eigenschaf ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.