Meine Merkliste
my.chemie.de  
Login  

Reibungsverluste ab der ersten Begegnung: Das Material verzeiht nichts

Dauerhafte molekulare Veränderungen schon beim ersten Kontakt

10.08.2018

Paul Schreiber, KIT/IAM

Hart trifft auf weich: Wenn die Saphirkugel über die Kupferprobe fährt, bewirkt dies bereits beim ersten Kontakt eine dauerhafte Veränderderung im Material.

Verschleiß führt zu erheblichen wirtschaftlichen oder gesundheitlichen Folgen. Alle beweglichen Teile sind davon betroffen, ob es sich um ein Lager in einer Windkraftanlage oder ein künstliches Hüftgelenk handelt. Bis heute ist jedoch weitgehend unklar, wie genau Verschleiß entsteht. Wissenschaftler des Karlsruher Instituts für Technologie (KIT) konnten nun belegen, dass der Effekt bereits bei der ersten Berührung auftritt und sich immer an einer ganz bestimmten Stelle im Material abspielt. Die Erkenntnisse sollen langfristig dazu dienen, optimierte Materialien zu entwickeln, um Energie und Rohstoffe einzusparen.

Wo Objekte aneinander haften, übereinander gleiten oder rollen, tritt Reibung auf. Die Reibungskräfte verursachen Verschleiß, und der kostet immense Summen. So werden etwa rund 30 Prozent der Energie im Transportsektor aufgewendet, um Reibung zu überwinden. In Deutschland kosten Reibung und Verschleiß rund 1,2 bis 1,7 Prozent des Bruttoinlandsprodukts, im Jahr 2017 also zwischen 42,5 bis 55,5 Milliarden Euro. Während die Konsequenzen jedoch beim Reiben der Hände noch einfach zu verstehen sind – sie werden warm – reagieren Materialien deutlich komplizierter. „Hier verändert sich gleichzeitig vieles. Aber wie diese Veränderung genau beginnt, wo Verschleißpartikel wirklich entstehen und wie sich die Reibungsenergie auswirkt, ist bis heute weitgehend unverstanden, da wir bisher kaum direkt unter die Oberfläche der Reibpartner schauen konnten“, so Professor Peter Gumbsch, Lehrstuhlinhaber für Werkstoffmechanik am KIT und Leiter des Fraunhofer-Instituts für Werkstoffmechanik. „Mit unseren neuen mikroskopischen Methoden gelingt uns das heute. Dann sieht man im Material eine scharfe Grenzfläche, und an dieser Grenze werden die Verschleißpartikel abgelöst. Die Frage ist, wo diese Schwächung im Material herkommt?“ Tatsächlich fanden die Wissenschaftler bei ihren Experimenten immer eine scharfe Linie in 150 bis 200 Nanometer Materialtiefe. Sie entsteht schon nach dem ersten Kontakt und ist nicht umkehrbar. Damit ist bereits der Grundstein für die zukünftige Schwachstelle im Material gelegt. Die Wissenschaftler experimentierten mit verschiedenen Materialien, etwa Kupfer, verschiedenen Messinglegierungen, Nickel, Eisen oder Wolfram, immer mit dem gleichen Resultat. „Diese Ergebnisse sind völlig neu. Wir haben mit so etwas überhaupt nicht gerechnet“, sagt Gumbsch. Die Erkenntnisse tragen dazu bei, Vorgänge, die sich bei der Reibung abspielen, auf einer molekularen Ebene grundlegend nachzuvollziehen. „Wenn wir die auftretenden Effekte verstehen, können wir gezielt eingreifen. Mein Ziel ist es, Richtlinien zu entwickeln, mit deren Hilfe man zukünftig Legierungen oder Materialien mit besseren Reibungseigenschaften herstellen kann“, so Gumbsch.

Das Material macht eine Welle

Bei dem aufgetretenen Defekt im Material handelt es sich um sogenannte Versetzungen. Diese sind für plastische, also unumkehrbare Verformungen verantwortlich. Der Effekt entsteht, wenn sich Atome gegeneinander verschieben. Im Material entsteht dabei gewissermaßen eine atomare Welle ähnlich der Bewegung einer Schlange. „Wir haben festgestellt, dass sich diese Versetzungen während des Reibvorgangs selbst organisiert zu der beobachteten linienartigen Struktur zusammenfügen. Dieser Effekt ist bei jedem Versuch in gleicher Weise aufgetreten“, erläutert Dr. Christian Greiner vom Institut für Angewandte Materialien - Computational Materials Science (IAM-CMS) des KIT.

Die Wissenschaftler verglichen den beobachteten Effekt mit der mechanischen Spannungsverteilung im Material, die sich analytisch berechnen lässt. Die Berechnungen bestätigten, dass sich bestimmte Versetzungstypen in einem Spannungsfeld mit einer Materialtiefe zwischen 100 und 200 Nanometer selbst organisieren.

Schnellere Oxidation durch Reibung

Zusätzlich zum erwähnten Effekt untersuchten die Wissenschaftler an Kupferproben, wie sich Reibung auf die Oxidation von Oberflächen auswirkt. Nach wenigen Reibungszyklen bildeten sich auf der Oberfläche Kupferoxidflecken, die mit der Zeit zu halbkreisförmigen nanokristallinen Kupferoxidclustern anwuchsen. Die etwa drei bis fünf Nanometer großen Kupfer-2-Oxid-Nanokristalle waren von einer amorphen Struktur umgeben und wuchsen immer mehr in das Material hinein, bis sie überlappten und eine geschlossene Oxidschicht bildeten. Dieses Phänomen, so Greiner, sei schon lange bekannt, aber auch hier sei noch nicht erforscht, wie es zu dem Effekt käme. „Es ist sehr wichtig zu verstehen, wie durch Reibung verursachte Oxidation vonstattengeht. In materialwissenschaftlichen Untersuchungen ist Kupfer ein sehr häufiges Material. Aber auch als Ausgangsmaterial für bewegliche Teile spielt es eine wichtige Rolle“, so Greiner. Viele Lager bestehen aus Kupferlegierungen wie Bronze oder Messing. Daher stoßen die Untersuchungsergebnisse in der kupferverarbeitenden Industrie auf großes Interesse.

Harte Kugel trifft auf weiches Kupfer

Der Versuchsansatz für beide Untersuchungen ist denkbar einfach: Eine Kugel aus Saphir wird dazu sehr sanft, langsam und kontrolliert in gerader Linie über ein Plättchen aus hochreinem Kupfer gezogen. Die Saphirkugel wurde gewählt, da sie einen immer gleichen, reproduzierbaren Kontaktpunkt garantiert und außerdem der Reibungseffekt auf die Kugel selbst wegen der Härte von Saphir vernachlässigbar ist. Nach jeder Überfahrung maßen die Forscher die entstandenen Verformungen und die dadurch hervorgerufenen strukturellen Veränderungen im Inneren der Metalle. In einem einzigartigen Ansatz koppelten sie dazu Reibexperimente mit Methoden der zerstörungsfreien Prüfung sowie mit Data-Science-Algorithmen und hochauflösender Elektronenmikroskopie.

Originalveröffentlichung:

Christian Greiner, Zhilong Liu, Reinhard Schneider, Lars Pastewka, Peter Gumbsch; "The origin of surface microstructure evolution in sliding friction"; Scripta Materialia; 153 (2018), 63-67.

Zhilong Liu, Christian Patzig, Susanne Selle, Thomas Höche, Peter Gumbsch, Christian Greiner; "Stages in the tribologically-induced oxidation of high-purity copper"; Scripta Materialia 153 (2018) 114-117.

Fakten, Hintergründe, Dossiers
Mehr über KIT
  • News

    CELEST: Neue Maßstäbe in der Energiespeicherforschung

    Elektrochemische Energiespeicher sind eine Schlüsseltechnologie des 21. Jahrhunderts. Mit dem Center for Electrochemical Energy Storage Ulm & Karlsruhe (CELEST) hat nun eine der ambitioniertesten Forschungsplattformen weltweit auf diesem Gebiet die Arbeit aufgenommen. Sie vereint erkenntnis ... mehr

    Weltkleinster Transistor schaltet Strom mit einzelnem Atom in festem Elektrolyten

    Als weltweit kleinsten Transistor hat der Physiker Professor Thomas Schimmel mit seinem Team am Karlsruher Institut für Technologie (KIT) den Einzelatom-Transistor entwickelt: ein quantenelektronisches Bauelement, das einen elektrischen Strom über das kontrollierte Verschieben eines einzeln ... mehr

    Selektiv löschbare 3-D-Tinten

    Im 3-D-Druck über direktes Laserschreiben lassen sich mikrometergroße Strukturen für viele Anwendungsbereiche fertigen – von der Biomedizin über die Mikroelektronik bis hin zu optischen Metamaterialien. Forscher am Karlsruher Institut für Technologie (KIT) haben nun 3-D-Tinten entwickelt, d ... mehr

  • Videos

    Bioliq: Energiegewinnung aus Reststoffen – komplette Prozesskette läuft

    Die bioliq®-Pilotanlage am Karlsruher Institut für Technologie (KIT) läuft erfolgreich über die gesamte Prozesskette. Alle Stufen des Verfahrens sind nun miteinander verbunden: Schnellpyrolyse, Hochdruck-Flugstromvergasung, Heißgasreinigung und Synthese. Durch bioliq® wird Restbiomasse in u ... mehr

    Sicherheit von Lithium-Ionen-Batterien erhöhen

    Lithium-Batterien sollten bei Transport, Montage und im Betrieb wirklich sicher sein. KIT-Wissenschaftler erklären, welche Faktoren dazu beitragen, die Sicherheit von Lithium-Ionen-Batterien zu erhöhen. mehr

    Kleben wie ein Gecko: selbstreinigend und haftsicher

    Geckos haben Klebestreifen eines voraus: Selbst nach wiederholtem Kontakt mit Schmutz und Staub kleben ihre Füße noch auf glatten Flächen einwandfrei. Forscher des KIT und der Carnegie Mellon Universität in Pittsburgh haben nun den ersten Klebstreifen entwickelt, der nicht nur genauso hafts ... mehr

  • Forschungsinstitute

    Institut für Funktionelle Grenzflächen (IFG) am Karlsruher Institut für Technologie (KIT)

    Forschungsgegenstand des Instituts für Funktionelle Grenzflächen (IFG) ist das Studium molekularer Interaktionen an fest/gas und fest/flüssig Grenzflächen. Aus der Untersuchung von Grundlagenprozessen auf der Nano-Ebene gewonnene Erkenntnisse werden konsequent auf die Makro-Ebene technische ... mehr

    Karlsruher Institut für Technologie (KIT)

    Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts und staatliche Einrichtung des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das ... mehr

  • q&more Artikel

    Biochemie in der Mikrowelle

    Die Entwicklung neuer Pharmazeutika beruht auf dem zunehmenden Verständnis intrazellulärer Vorgänge. Insbesondere durch die Erforschung von Ligand-Rezeptor-Wechselwirkungen können Wirkstoffe ­besser angepasst werden. Um Medikamente an ihren Wirkungsort ­zu bringen, werden sog. „Carrier“-Mol ... mehr

  • Autoren

    Prof. Dr. Stefan Bräse

    Stefan Bräse, geb. 1967, studierte Chemie in Göttingen und promovierte dort 1995 an der Universität. Nach Postdoktoraten in Uppsala/S und La Jolla/USA begann er an der RWTH ­Aachen mit seinen eigenständigen Arbeiten (Habilitation in organischer Chemie 2001) und wechselte 2001 als Professor ... mehr

    Dr. Sidonie Vollrath

    Sidonie Vollrath, geb. 1984, studierte Chemie in Karlsruhe und promovierte 2012 am KIT in der Gruppe von Prof. S. Bräse. ­Während des Studiums und der Promotion ­absolvierte sie Forschungsaufenthalte an der University of Wisconsin in Madison bei Prof. H. Blackwell sowie an der New York Univ ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.