Meine Merkliste
my.chemie.de  
Login  

Blauer Phosphor – jetzt erstmals vermessen und kartiert

18.10.2018

HZB

Die STM-Aufnahme zeigt Blauen Phosphor auf einem Gold-Substrat. Blau eingezeichnet sind die errechneten Positionen der leicht erhöhten P-Atome, weiß, die der tiefer liegenden. Im STM-Bild zeigen sich Gruppen aus sechs erhöhten P-Atomen als Dreiecke.

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren roter, violetter, weißer und schwarzer Phosphor. Während einige Phosphorverbindungen sogar lebenswichtig sind, ist weißer Phosphor giftig und brandgefährlich und schwarzer Phosphor ganz im Gegenteil besonders stabil. Doch nun ist eine weitere Modifikation identifiziert: 2014 hat ein Team der Michigan State University, USA, durch Modellierungen herausgefunden, dass auch „Blauer Phosphor“ stabil sein sollte. In dieser Modifikation vernetzen sich die Phosphor-Atome ähnlich wie beim Graphen zu einer Art Bienenwabenstruktur, die jedoch nicht perfekt flach ist, sondern regelmäßige „Buckel“ hat. Modellrechnungen zeigen, dass diese Phosphor-Modifikation kein Halbleiter mit einer schmalen Energielücke ist, sondern eine verhältnismäßig große Bandlücke von 2 Elektronenvolt aufweisen sollte. Das wäre etwa der siebenfache Wert des schwarzen Phosphors im Volumen und hochinteressant für optoelektronische Anwendungen.

Blauer Phosphor an BESSY II untersucht

2016 gelang es, Blauen Phosphor durch Aufdampfen auf einer Goldoberfläche abzuscheiden. Doch erst jetzt gibt es die Gewissheit, dass es sich dabei tatsächlich um Blauen Phosphor handelt. Dafür hat ein Team vom HZB um Evangelos Golias an BESSY II erstmals die elektronische Bandstruktur solcher Proben vermessen. Sie konnten die Energieverteilung der äußeren gebundenen Elektronen im Valenzband mit der Methode der winkelaufgelösten Photoemissionsspektroskopie abtasten und damit eine untere Grenze für den Wert der Bandlücke von blauem Phosphor angeben.

Bandstruktur durch Gold-Substrat beeinflusst

Dabei fanden sie heraus, dass die P-Atome sich nicht ganz unabhängig vom Gold-Substrat anordnen, sondern versuchen, sich an die Abstände zwischen den Gold-Atomen anzupassen. Dies verzerrt das gewellte Wabengitter, was sich wiederum auf die Energieverteilung der Elektronen auswirkt. So stimmt die Oberkante des Valenzbands, wo die  Bandlücke beginnt, mit der theoretischen Vorhersage überein und ist in etwa so groß wie theoretisch vorhergesagt, jedoch etwas verschoben.

Ausblick: optoelektronische Anwendungen

„Bisher hat man vor allem schwarzem Phosphor benutzt, um davon einzelne Atomlagen abzutragen“, erklärt Oliver Rader, der die HZB-Abteilung „Materialien für grüne Spintronik“ leitet. „Diese einzelnen Atomlagen weisen ebenfalls eine große Bandlücke auf, besitzen aber nicht die Bienenwabenstruktur des blauen Phosphors und können vor allem nicht direkt auf einem Substrat hergestellt werden. Unsere Ergebnisse offenbaren nicht nur die Materialeigenschaften dieser neuartigen zweidimensionalen Modifikation des Phosphors, sondern zeigen auch, wie das Substrat das Verhalten der Elektronen im blauen Phosphor beeinflusst. Und das ist ein wichtiger Faktor für jegliche optoelektronische Anwendung.“

Fakten, Hintergründe, Dossiers
  • Phosphor
  • blauer Phosphor
  • Photoemissionsspektroskopie
  • Bandlücke
Mehr über Helmholtz-Zentrum Berlin für Materialien und Energie
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.