Meine Merkliste
my.chemie.de  
Login  

Auf Wiedersehen, Silizium?

Auf dem Weg zu neuen Materalien für die Elektronik

18.10.2018

© MPI-P

Ein metall-organisches Netzwerk könnte in Zukunft als Ersatz für das Halbleitermaterial Silizium dienen.

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese Anwendungen wird hochreines Silizium benötigt, welches in der Herstellung sehr teuer ist. Dies ist darauf zurückzuführen, dass Defekte in einem Material dessen elektrischen Eigenschaften stark beeinflussen. Wissenschaftler um Gruppenleiter Dr. Enrique Cánovas (MPI-P, Abteilung Prof. Dr. Mischa Bonn) haben nun ein neues und kostengünstiges Material entwickelt, ein sogenanntes „metall-organisches Netzwerk“ (engl. metal-organic framework, MOF), welches ähnliche elektrische Eigenschaften wie Silizium aufweist.

Das MOF, welches von der Gruppe von Xinliang Feng in Dresden hergestellt wurde, ist ein hochkristalliner Festkörper, der aus Eisenionen aufgebaut ist, die über organischen Moleküle miteinander verbundenen sind. Aufgrund dieser Struktur (Eisen + organische Moleküle) wird er als metall-organisches Netzwerk bezeichnet. Im Gegensatz zu Silizium kann das Material bei Raumtemperatur hergestellt werden. Die Zusammensetzung, Beschaffenheit und elektronischen Eigenschaften können hierbei während des Herstellungsprozesses einfach angepasst werden.

In der Vergangenheit hergestellte Netzwerke zeigten keine oder eine nur sehr geringe elektrische Leitfähigkeit. Dies verhinderte deren Einsatz in optoelektronischen Komponenten, wo eine ausreichende Beweglichkeit der Elektronen in dem Material bei Anlegen eines elektrischen Feldes benötigt wird. Mit dem neu hergestellten MOF haben die Forscher aus Mainz nun gezeigt, dass sich die Elektronen in dem organisch-basierten Material ähnlich wie in Silizium verhalten. Das Verhalten wird als sogenanntes „Drude-Verhalten“ bezeichnet (nach dem Physiker Paul Drude). Dies bedeutet, dass sich die Material-Elektronen bei Anlegen eines externen elektrischen Feldes – also einer Spannung – fast frei bewegen können. Dieses Verhalten, meist beobachtbar in inorganischen, hochgeordneten Kristallen wie Silizium, wurde bisher kaum in organisch basierten Materialien beobachtet, da diese normalerweise eine ungeordnete Struktur besitzen.

Zur Charakterisierung der einzigartigen Eigenschaften des hergestellten Netzwerks haben die Wissenschaftler des MPI-P die Technik der ultraschnellen Terahertz-Spektroskopie verwendet. Diese Technologie erlaubt eine Messung der Leitfähigkeit ohne physikalischen und damit störenden Kontakt zum Material. Hierbei wird über einen Laserpuls, der im sichtbaren Spektralbereich liegt, zunächst Energie an die Elektronen des Materials transferiert. Mit einem zweiten Laserpuls – einem sogenannten Terahertz-Puls, welcher ungefähr einen Faktor 1000 langsamer schwingt als sichtbares Licht, kann nun die Leitfähigkeit dieser angeregten Elektronen abgefragt. Dies resultiert in einem frequenzabhängigen Leitfähigkeits-Signal, durch welches die Wissenschaftler das Drude-Verhalten verifizieren konnten. „Durch diese Messungen konnten wir Rekord-Mobilitäten der Elektronen in diesem Material messen, welche die Mobilitäten von isolierenden MOFs um einen Faktor 10000 übersteigen“, sagt Dr. Enrique Canovas vom MPI-P. Dies bedeutet, dass sich Elektronen einfach über lange Strecken bei Anlegen eines elektrischen Feldes in dem MOF bewegen können, ein Effekt welcher in 1000 µm langen Proben gemessen werden konnte. Daher ebnet das neue Material den Weg für die Nutzung metall-organischer Netzwerke in der Optoelektronik.

In Zukunft wollen die Forscher daran arbeiten, die elektronischen Eigenschaften des Materials direkt bei der Herstellung über die Zusammensetzung des MOFs modifizieren und vorhersagen zu können.

Fakten, Hintergründe, Dossiers
Mehr über MPI für Polymerforschung
  • News

    Molekulare Multiwerkzeuge

    Die Funktionalisierung von Oberflächen mit verschiedenen physikalischen oder chemischen Eigenschaften ist eine Anforderung in vielen Anwendungsgebieten. So erlaubt zum Beispiel die Strukturierung von Oberflächen mit wasserliebenden und wasserabweisenden Flächen eine Trennung von Emulsionen, ... mehr

    Was passiert in einer Solarzelle, wenn das Licht ausgeht?

    Was in einer Solarzelle passiert, wenn das Licht ausgeht, hängt stark vom verwendeten Material ab. In herkömmlichen Siliziumsolarzellen ist die Antwort sehr einfach: der Strom, den die Zelle produziert, geht sofort auf Null zurück. Ganz anders ist dies in sogenannten Perowskitsolarzellen: H ... mehr

    Rätsel um mit Licht angeregtes Graphen gelöst

    Das Kernstück vieler moderner Geräteanwendungen ist die Lichterkennung und -steuerung, wie sie beispielsweise in Smartphone-Kameras zum Einsatz kommt. Die Verwendung von Graphen als lichtempfindliches Material für Lichtsensoren kann gegenüber den gegenwärtig verwendeten Materialien erheblic ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für Polymerforschung

    Das Max-Planck-Institut für Polymerforschung (MPI-P) zählt zu den international führenden Forschungszentren auf dem Gebiet der Polymerwissenschaft. Es wurde 1983 auf dem Campus der Johannes Gutenberg-Universität gegründet und nahm im Juni 1984 seine wissenschaftliche Arbeit auf. mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Tröpfchen für Tröpfchen kosmische Chemie simulieren

    Zwei Astronomen des Max-Planck-Instituts für Astronomie und der Universität Jena haben eine elegante neue Methode entwickelt, die es erlaubt, die Energie einfacher chemischer Reaktionen unter ähnlichen Bedingungen zu messen wie bei Atomen und Molekülen im frühen Sonnensystem. Die neue Techn ... mehr

    Wenn ein Molekül Photonen sortiert

    Fluoreszierende organische Moleküle sind allgemein als Pigmente bekannt oder finden in der Fluoreszenzmikroskopie in vielen Bereichen der Biologie Anwendung. Obwohl sie, wie jedes andere Molekül, quantenmechanische Objekte sind, die aus einer kleinen Zahl von Atomen bestehen, werden organis ... mehr

    Neuer Stoff für Chemie-Lehrbücher

    Auch altbekanntes ist manchmal noch für eine Überraschung gut. Calciumcarbonat (CaCO3), im Volksmund einfach als Kalk bekannt, ist ein Mineral, das Chemiker schon gründlich untersucht haben. Chemielehrbücher führen es mit fünf verschiedenen Kristallstrukturen, müssen jetzt aber ergänzt werd ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.