Meine Merkliste
my.chemie.de  
Login  

Supraleiter: Widerstand ist zwecklos

Die Suche nach dem Heiligen Gral der Festkörperphysik

29.01.2019

Copyright: TU Wien

Verschiedene Cuprate, an denen Neven Barišić forscht.

Über Supraleitung muss ganz neu nachgedacht werden. Experimente an der TU Wien beweisen, dass unbewegliche Ladungsträger, die als „Klebstoff“ wirken, die Supraleitung erst ermöglichen.

Jedes gewöhnliche Kabel, jeder Draht, jeder elektronische Bauteil hat einen gewissen elektrischen Widerstand. Es gibt allerdings spezielle supraleitende Materialien mit der besonderen Fähigkeit, elektrischen Strom mit einem Widerstand von exakt null zu transportieren – zumindest bei sehr niedrigen Temperaturen. Ein Material zu finden, das sich auch bei Raumtemperatur immer noch als Supraleiter verhält, wäre ein wissenschaftlicher Durchbruch von herausragender Bedeutung, sowohl in theoretischer als auch in technologischer Hinsicht. Es würde eine Reihe ganz neuer Anwendungen ermöglichen, von schwebenden Hochgeschwindigkeitszügen bis hin zu neuen bildgebenden Verfahren für die Medizin.

Die Suche nach solchen Hochtemperatur-Supraleitern ist allerdings extrem schwierig, weil viele der Quanteneffekte, die mit der Supraleitung in Zusammenhang stehen, noch nicht gut verstanden sind. Professor Neven Barišic vom Institut für Festkörperphysik an der TU Wien experimentiert mit Cupraten, einer Materialklasse, die bei Normaldruck bis zu einer Temperatur von 140 Kelvin (-133° C) supraleitend bleiben, damit sind Cuprate bis heute die Rekordhalter. Barišic und seinem Team gelang es nun, bemerkenswerte neue Resultate zu erzielen und neue Ideen vorzustellen, durch die sich die Art, wie man über komplexe Materialien und Hochtemperatur-Supraleitung denkt, völlig verändern soll.

Die Suche nach dem Heiligen Gral

„Das Phänomen der Hochtemperatur-Supraleitung wird seit Jahrzehnten eingehend erforscht, aber bisher hat niemand das Rätsel wirklich gelöst“, sagt Neven Barišic. „Es gibt durchaus einige Materialien, die supraleitendes Verhalten bei Temperaturen in der Nähe des absoluten Nullpunktes zeigen, und bei manchen verstehen wir sogar, warum das so ist. Aber die wirkliche Herausforderung ist es, Supraleitung in Cupraten zu verstehen, wo sie bei viel höheren Temperaturen bestehen bleibt. Ein Material, das bei Raumtemperatur supraleitend bleibt, wäre gewissermaßen der Heilige Gral der Festkörperphysik, und dem kommen wir näher und näher.“

Barišic konnte mit seinem Team nun zeigen, dass es in Cupraten zwei fundamental unterschiedliche Ladungsträger gibt. Das subtile Wechselspiel zwischen ihnen ist entscheidend für die Supraleitung.

Manche der elektrischen Ladungsträger im Material sind lokalisiert, jeder von ihnen sitzt an ganz bestimmten Atomen und kann sich nur wegbewegen, wenn das Material aufgeheizt wird. Andere Ladungsträger hingegen sind mobil und können von einem Atom zum anderen springen. Diese mobilen Ladungsträger sind es, die supraleitend werden, aber die Supraleitung lässt sich nur erklären, wenn man auch die immobilen Ladungsträger berücksichtigt.

„Es gibt eine Wechselwirkung zwischen den beweglichen und den unbeweglichen Ladungsträgern, durch die sich die Energie des Systems verändert“, sagt Barišic. „Die unbeweglichen Ladungsträger wirken als Klebstoff und binden Paare von mobilen Ladungsträgern aneinander, die sogenannte Cooper-Paare bilden. Die Bildung von Ladungsträger-Paaren ist die Grundidee hinter klassischen Supraleitern. Erst wenn die Ladungsträger gepaart werden, können sie supraleitend werden, und das Material transportiert die Ladung ohne jede Streuung und ohne jeden Widerstand.“

Das bedeutet, dass man die Zahl von mobilen und immobilen Ladungsträgern sorgfältig ausbalancieren muss, um Supraleitung zu erhalten. Gibt es zu wenige lokalisierte Ladungsträger, steht zu wenig „Klebstoff“ zum Koppeln der beweglichen Ladungsträger zur Verfügung. Gibt es hingegen zu wenige mobile Ladungsträger, dann gibt es nichts, was der Klebstoff koppeln könnte. In beiden Fällen wird die Supraleitung geschwächt oder bricht überhaupt zusammen. Dazwischen gibt es einen optimalen Bereich, in dem die Supraleitung bis hin zu bemerkenswert hohen Temperaturen erhalten bleibt. Die große Herausforderung war es, herauszufinden, wie sich diese Balance zwischen mobilen und immobilen Ladungsträgern kontinuierlich ändert, abhängig von der Temperatur oder der Dotierung des Materials mit anderen Atomen.

„Wir haben viele unterschiedliche Experimente mit Cupraten durchgeführt und riesengroße Datenmengen gesammelt. Nun können wir schließlich ein umfassendes phänomenologisches Bild der Supraleitung in Cupraten präsentieren“, sagt Neven Barišic. Fast gleichzeitig veröffentlichte er seine Ergebnisse nun in mehreren Fachjournalen, darunter „Nature“. Darin konnte nachgewiesen werden, dass Supraleitung graduell entstehen kann – ein wichtiger Schritt in Richtung des Ziels, Cuprate zu verstehen und noch bessere Supraleiter zu entwickeln.

Wenn es möglich wird, Materialien zu erzeugen, die auch bei Raumtemperatur noch supraleitend bleiben, hätte das weitreichende Konsequenzen für unsere Technologie. Man könnte elektronische Geräte bauen, die kaum noch elektrische Energie verbrauchen würden. Schwebende Züge könnten konstruiert werden, mit Hilfe von extrem starken supraleitenden Magneten, sodass billiger, ultraschneller Transport möglich werden würde. „Noch stehen wir nicht vor dem Ziel“, sagt Neven Barišic. „Aber ein tiefes Verständnis von Hochtemperatur-Supraleitung würde den Weg dorthin ebnen. Und ich glaube, dass wir nun gleich mehrere wichtige Schritte in diese Richtung genommen haben.“

Fakten, Hintergründe, Dossiers
Mehr über TU Wien
  • News

    Aushärtung von Faserverbundwerkstoffen mit der Taschenlampe

    Eine hocheffiziente Spezialformel für ein Epoxidharz wurde an der TU Wien entwickelt. Die notwendige Energie zur Aushärtung von Faserverbundwerkstoffen wird damit um 99,9 % reduziert. Auf der Hannover Messe Anfang April wird dieses Harz der Industrie präsentiert. In vielen Industriebereiche ... mehr

    Wie man Wärmeleitung einfriert

    An der TU Wien wurde ein physikalischer Effekt entdeckt, der elektrisch leitende Materialien mit extrem niedriger Wärmeleitfähigkeit ermöglicht. Damit kann man Abwärme in Strom umwandeln. Jeden Tag geht uns wertvolle Energie in Form von Abwärme verloren – bei technischen Geräten zu Hause, a ... mehr

    Supraleitung: Warum muss es so kalt sein?

    Bis heute gibt es keine exakte Rechenmethode, um supraleitende Materialien zu beschreiben. An der TU Wien gelang nun aber ein wichtiger Schritt in diese Richtung und damit auch besseres Verständnis warum gängige Materialien Supraleitung nur bei ca. -200°C zeigen. Warum muss es immer so kalt ... mehr

  • Videos

    Epoxy Resin

    A flash of ultraviolet light sets off a chain reaction which hardens the whole object. mehr

    Noreia

    Zeitraffervideo, das die Installation der Beschichtungsmaschine Noreia an der TU Wien zeigt. mehr

    Shaping Drops: Control over Stiction and Wetting

    Some surfaces are wetted by water, others are water-repellent. TU Wien (Vienna), KU Leuven and the University of Zürich have discovered a robust surface whose adhesive and wetting properties can be switched using electricity. This remarkable result is featured on the cover of Nature magazin ... mehr

  • Universitäten

    Technische Universität Wien

    Die TU Wien ist mit knapp 30.000 Studierenden und rund 4.800 Mitarbeiter_innen Österreichs größte Forschungs- und Bildungsinstitution im naturwissenschaftlich-technischen Bereich. Unter dem Motto "Technik für Menschen" wird an der TU Wien schon seit über 200 Jahren geforscht, gelehrt und g ... mehr

    Technische Universität Wien

    mehr

  • q&more Artikel

    Das Herz in der Petrischale

    Regenerative Medizin stellt eine der großen Zukunftshoffnungen und Entwicklungsperspektiven in der medizinischen Forschung des 21. Jahrhunderts dar. Revolu­tionäre Resultate konnten bereits durch gentechnische Eingriffe erzielt werden, ­wobei allerdings ethische und regulatorische Aspekte e ... mehr

  • Autoren

    Dr. Kurt Brunner

    Kurt Brunner, geb. 1973, studierte Technische Chemie an der TU Wien, wo er 2003 am Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften promovierte. Während seiner Dissertation arbeitete er im Bereich der Molekularbiologie der Pilze mit Forschungsaufenthalten an de ... mehr

    Prof. Dr. Marko D. Mihovilovic

    Marko D. Mihovilovic, Jg. 1970, studierte von 1988–1993 technische Chemie an der TU Wien und promovierte dort 1996 im Bereich Organische Synthesechemie. Anschließend war er für Postdoc-Aufenthalte als Erwin-Schrödinger-Stipendiat an der University of New Brunswick, Kanada sowie an der Unive ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.