Meine Merkliste
my.chemie.de  
Login  

In Echtzeit dem Erstarren von Metallen zuschauen

07.03.2019

Materialwissenschaftler wollen mit Hilfe der 3D-Röntgentomoskopie das dendritische Wachstum besser verstehen und dafür die Geschwindigkeit zur Aufnahme von Röntgentomogrammen auf das Zwanzigfache erhöhen

Wenn man Metall dabei zuschaut, wie es erstarrt, sieht es so aus, als ob lauter kleine Bäume wachsen. Diese Strukturen werden Dendriten genannt, abgeleitet aus dem griechischen Wort déndron für Baum. Deshalb spricht die Wissenschaft auch von dendritischem Wachstum. Dieser Prozess des Erstarrens ist hochkomplex und teilweise noch unverstanden. Wer zuschauen will benötigt allerdings Röntgenstrahlen, denn nur diese durchdringen Metall. Für die Entschlüsselung des Erstarrungsprozesses steht mit der 3D-Röntgentomoskopie jetzt eine geeignete Methode zur Verfügung, denn das Dendritenwachstum ist ein dreidimensionaler Vorgang und er verläuft rasend schnell.

Die 3D-Röntgentomoskopie ist extrem schnell. 50 Tomogramme pro Sekunde können die Mitarbeiter von Prof. Dr. John Banhart im Moment aufnehmen. Das ist Weltrekord. „Aber für das Dendritenwachstum ist es noch nicht schnell genug“, sagt der Leiter des TU-Fachgebietes Struktur und Eigenschaften von Materialien. „Wir wollen 1000 Tomogramme pro Sekunde schaffen und damit erstmals die Tomoskopie auch auf den Erstarrungsprozess von Metallen anwenden, um ihn besser zu verstehen.“ Den Begriff der Tomoskopie hat Banharts Team erst vor Kurzem geprägt. Die Wissenschaftler wollen damit die enorme Schnelligkeit ausdrücken, die sie mittlerweile erreichen, und sich von der langsameren Vorstufe – der 3D-Tomografie – auch sprachlich absetzen.

Die Deutsche Forschungsgemeinschaft (DFG) stufte diese Forschungen als „besonders innovativ“ ein und bewilligte ein „Reinhart-Koselleck-Projekt“. Mit dieser DFG-Förderlinie erhalten durch ihre wissenschaftliche Leistung ausgewiesene Forscher die Möglichkeit, sich risikobehafteten Vorhaben widmen zu können. Finanziert wird das Reinhart-Koselleck-Projekt von Prof. Dr. John Banhart von der DFG über fünf Jahre mit insgesamt 750.000 Euro.

Bei der 3D-Tomoskopie werden dreidimensionale Röntgentomogramme in Bruchteilen von Sekunden aufgenommen und zu einem 3D-Film verarbeitet. Mit der Anwendung der 3D-Röntgentomoskopie auf die Untersuchung von Metallschäumen haben John Banhart und seine Arbeitsgruppe bereits einschlägige Erfahrungen. Angewendet wird dieses Material zum Beispiel für Dämpfungselemente im Maschinenbau und im Leichtbau. Auch gibt es erste Ansätze, Motoren in Elektrofahrzeugen in Metallschaum zu verpacken, um sie vor eindringenden Gegenständen zu schützen, die einen Kurzschluss und damit eine Explosion auslösen könnten.

Wie fast jeder Schaum hat auch Metallschaum die Tendenz, nicht beständig zu sein. Der schöne Bierschaum verschwindet schneller, als einem lieb ist, und in der Badewanne kann man dem Platzen der Schaumblasen buchstäblich zusehen. Träume sind Schäume heißt es deshalb auch im Volksmund. Diese Unbeständigkeit von Schaum macht auch Materialwissenschaftlern wie Prof. Dr. John Banhart zu schaffen. „Metallschäume werden aus einem Metallpulver und einem Treibmittel hergestellt. Das Treibmittel ist ebenfalls ein Pulver aus Metall und Wasserstoff. Beides wird miteinander vermischt, verdichtet und erhitzt und dabei setzt das Treibmittel Wasserstoff frei, wodurch das Gemisch aufgeschäumt wird. Während des Erstarrungsprozesses platzen die Blasen und wachsen zu größeren zusammen. Das ist ein unerwünschter Prozess, weil sich dadurch die mechanischen Eigenschaften des Materials verschlechtern“, erklärt John Banhart. Mit Hilfe der 3D-Tomoskopie ist es seiner Gruppe gelungen zu beschreiben, warum die Blasen platzen: Die Ursache sind lokale Druckerhöhungen um die Treibmittelteilchen herum. „Deshalb forschen wir daran, ein neues Treibmittel zu finden, das sich in dem Metall gleichmäßiger verteilt und den Schaum sanfter erzeugt“, so Banhart.

Eine weitere Anwendung der Tomoskopie sind Prozesse, bei denen mittels eines Laserstrahls Metall in sehr kurzer Zeit geschmolzen wird. Dies kann das Laserstrahlschweißen und -schneiden sein, aber auch die additive Fertigung, auch als 3D Druck bekannt, wo Material schichtweise zu einem Bauteil aufgetragen wird. Hier will John Banharts Arbeitsgruppe die 3D-Röntgentomoskopie dazu nutzen herauszufinden, was in der kurzen Zeit des Aufschmelzens und Wiedererstarrens passiert.

Ein zweiter Schwerpunkt wird sein, die gewaltigen Datenmengen, die anfallen werden – mehrere Terabyte pro Minute –, mathematisch so zu verarbeiten, dass sie auch zu einem Erkenntnisgewinn führen. „Da stehen wir vor einer enormen Herausforderung“, sagt John Banhart. Der dritte Schwerpunkt der Forschungen ist die Entwicklung funktionaler und transportabler experimenteller Aufbauten, mit denen die Aufnahmen am Synchrotron des Paul-Scherer-Instituts in der Schweiz gemacht werden können. John Banhart: „Wir benötigen intensives Röntgenlicht, und das wird uns nur von Synchrotrons bereitgestellt.“

Fakten, Hintergründe, Dossiers
  • 3D-Röntgentomoskopie
  • Metalle
  • Metallschäume
Mehr über TU Berlin
  • News

    Neuer Super-Kunststoff mit positiver Ökobilanz

    Gemeinsam mit dem Leverkusener Polymer-Unternehmen Covestro, der Technischen Universität Berlin, dem Kunststoff-Zentrum Leipzig und dem Flugzeughersteller Airbus hat der Lehrstuhl für Technische Thermodynamik (LTT) der RWTH Aachen ein Hochleistungskunststoff (HPT) entwickelt, der künftig in ... mehr

    Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

    Die Wissenschaft rund um Mikro- und Nanolaser erlebt einen weltweiten Hype.  In der Regel beschäftigen sich die Forscher und Forscherinnen vor allem mit der grundlegenden Physik dieser Laser. Welchen möglichen Nutzen diese extrem kleinen Laser in der Anwendung mal haben werden, ist dagegen ... mehr

    Bestimmt Ordnung oder Unordnung die Katalyse?

    Kaum ein chemischer Prozess kommt heute noch ohne Katalyse aus. Die überwiegende Mehrzahl aller Herstellungs- und Umwandlungsprozesse in der Chemischen Industrie laufen katalytisch ab. Ein wichtiger katalytischer Prozess ist die Umwandlung von Luftsauerstoff zu Wasser. Diese Reaktion wird u ... mehr

  • Videos

    Katalysatoren für die Umwandlung von Methan

    Methan ist Hauptbestandteil von Biogas und Erdgas. Bei der Erdölförderung werden Milliarden Kubikmeter Methan ungenutzt abgefackelt, weil oft wirtschaftliche Transportmöglichkeiten fehlen. Dieses Problem will der Berliner Exzellenzcluster „Unifying Concepts in Catalysis“ (UniCat) mit Hilfe ... mehr

  • Universitäten

    Technische Universität Berlin

    Die Technische Universität Berlin versteht sich als international renommierte Universität in der deutschen Hauptstadt, im Zentrum Europas. Eine scharfe Profilbildung, herausragende Leistungen in Forschung und Lehre, die Qualifikation von sehr guten Absolventinnen und Absolventen und eine mo ... mehr

  • q&more Artikel

    Wasser statt Mineralöl

    Grundlage vieler Medikamente sind Wirkstoffe aus chiralen Bausteinen. Für die chemische Herstellung sind teure Edelmetallkatalysatoren notwendig, die sich aufgrund ihrer thermischen Instabilität bei höheren Temperaturen zersetzen und daher nur einmal verwendet werden können. mehr

    David gegen Goliath

    Wo der Laie nur ekligen Schimmel sieht, offenbart sich beim Blick durch das Mikroskop eine ganz besondere Welt der Ästhetik. Ein ­filigranes Netzwerk aus lang gestreckten und verzweigten Pilz­hyphen durchsetzt das Substrat, Lufthyphen erobern den Luftraum und bilden farbige Sporen, mit dene ... mehr

  • Autoren

    Dr.-Ing. Henriette Nowothnick

    Jg. 1980, studierte Chemie an der Technischen Universität Berlin. Sie promovierte 2010 in der Arbeitsgruppe von Prof. R. Schomäcker über die Reaktionsführung der Suzuki-Kupplung in Mikro­emulsionen mit dem Ziel des Katalysator Re-using und der Produktisolierung. 2011 bis 2012 arbeitete sie ... mehr

    Dipl. Ing. Sonja Jost

    Jg. 1980, studierte Wirtschafts­ingenieurwesen / Technische Chemie an der Technischen Universität Berlin. Von 2006 bis 2011 erhielt sie verschiedene Forschungsstipendien im Bereich der homogenen chiralen Katalyse. 2011 bis 2012 war sie Projektleiterin eines Drittmittelprojekts zum Thema „Ka ... mehr

    Prof. Dr. Vera Meyer

    Vera Meyer, geb. 1970, studierte Biotechnologie an der Universität ­Sofia und der Technischen Universität Berlin, wo sie 2001 promovierte. Nach Forschungs- aufenthalten am Imperial College London und der Universität Leiden habilitierte sie 2008 an der Technischen Universität Berlin. Von 200 ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.