Meine Merkliste
my.chemie.de  
Login  

Diamant als Baustoff für optische Schaltkreise

Materialrevolution in der Optomechanik ermöglicht Bauteile aus einem Guss

KIT/CFN/Pernice

Zwei parallele freistehende Wellenleiter aus polykristallinem Diamant dienen als mechanische Resonatoren. In ihnen breiten sich optische Felder aus (rot/blau)

12.04.2013: Der Einsatz von Licht zur Informationsverarbeitung öffnet viele Möglichkeiten. Um die Photonen des Lichts jedoch gezielt in Schaltkreisen und Sensoren einzusetzen, werden Materialien benötigt, die die richtigen optischen und mechanischen Eigenschaften mitbringen. Forscher am Karlsruher Institut für Technologie (KIT) haben nun erstmals polykristallinen Diamant für einen optischen Schaltkreis eingesetzt und ihre Ergebnisse bei Nature Communications online veröffentlicht.

„Diamant hat mehrere Eigenschaften, die es uns ermöglichen, alle Komponenten eines einsatzbereiten optomechanischen Schaltkreises sozusagen aus einem Guss zu realisieren“, sagt Wolfram Pernice Gruppenleiter am KIT. „Die so hergestellten Elemente - die Resonatoren, Schaltkreise und der Wafer - überzeugen durch ihre hohe Qualität.“

Diamant ist durchsichtig, also optisch transparent für Lichtwellen aus einem weiten Wellenlängenbereich, der auch das sichtbare Spektrum zwischen 400 und 750 Nanometer Wellenlänge abdeckt. Damit lässt er sich gezielt in optomechanischen Schaltungen für Anwendungen in der Sensorik, der Fluoreszenz-Bildgebung oder für neuartige optische Messmethoden in der Biologie einsetzen. Sein hoher Brechungsindex und das Fehlen von Absorption sorgen für einen effizienten Transport der Photonen. Darüber hinaus macht ihn sein hohes Elastizitätsmodul zu einem robusten Werkstoff, der sich gleichzeitig hervorragend an raue Oberflächen anpasst und dabei noch die Eigenschaft hat, Wärme schnell wieder abzugeben.

Bislang wurden optische Schaltkreise nur mit einkristallinen Diamantsubstraten realisiert. Das sind hochreine Kristalle, bei denen unter einer Milliarden Diamant-Atomen höchstens ein Fremdatom vorkommt. Ihre Herstellung ist auf kleine Größen begrenzt und erfordert ein anspruchsvolles Verfahren, um sie auf Isolatoren, die für einen Schaltkreis benötigt werden, aufzubringen.

Die Forschungsgruppe von Pernice nutzte für die Realisierung ihrer optomechanischen Schaltkreise auf einem Wafer erstmals polykristallinen Diamant. Dieser weist zwar unregelmäßigere Kristallstrukturen auf, verhält sich aber insgesamt robuster und lässt sich entsprechend einfacher auf Isolatoren aufbringen. Dadurch kann man ihn großflächiger als den einkristallinen Diamanten verarbeiten. Er leitet die Photonen nahezu genauso effizient weiter wie einkristallines Diamantsubstrat und ist für den industriellen Einsatz geeignet. Das neue Material hat die Realisierung eines optomechanischen Bauteiles aus einem Guss erst ermöglicht.

Die Optomechanik verbindet die integrierte Optik mit mechanischen Elementen - im Fall des optomechanischen Schaltkreises der Gruppe Pernice mit nanomechanischen Resonatoren. Diese schwingfähigen Systeme reagieren auf eine bestimmte Frequenz. Tritt diese Frequenz auf, schwingt der Resonator mit. „Nanomechanische Resonatoren gehören zu den empfindlichsten Sensoren überhaupt und werden für eine Vielzahl von Präzisionsmessungen eingesetzt. Allerdings ist es extrem schwierig, solche kleinsten Bauteile mit etablierten Messmethoden anzusprechen“, erklärt Patrik Rath, Erstautor der Studie. „In unserer Arbeit haben wir die Tatsache genutzt, dass heute nanophotonische Bauelemente größengleich mit nanoskaligen mechanischen Resonatoren angefertigt werden können. Reagiert der Resonator, werden entsprechende optische Signale direkt an den Schaltkreis weitergegeben.“ Diese Entwicklung ermöglichte die Kombination dieser beiden ehemals getrennten Forschungsfeldern und somit die Realisierung von sehr effizienten optisch-mechanischen Schaltungen.

Die integrierte Optik funktioniert ähnlich wie integrierte Schaltkreise. Optische Schaltkreise geben Information über Photonen weiter, in den uns vertrauten elektronischen Schaltkreisen geschieht dies über Elektronen. Ziel der integrierten Optik ist es, alle zum Aufbau eines optischen Kommunikationsprozesses erforderlichen Komponenten in einem integrierten optischen Schaltkreis unterzubringen und so den Umweg über elektrische Signale zu vermeiden. In beiden Fällen werden die Schaltkreise auf weniger als ein Millimeter dicken Platten, auf sogenannten Wafern, aufgebracht.

Der polykristalline Diamant wurde in Zusammenarbeit mit dem Fraunhofer Institut für Angewandte Festkörperphysik und der Firma Diamond Materials in Freiburg hergestellt. Die im Rahmen des Projekts „Integrated Quantum-Photonics" am DFG-Centrum für funktionelle Nanostrukturen (CFN) in Karlsruhe hergestellten Prototypen eröffnen neue Wege für komplett optisch gesteuerte Plattformen, wie sie in der Grundlagenforschung und in der erweiterten Sensor-Anwendung vermehrt benötigt werden. Sensor-Anwendungen sind beispielsweise Beschleunigungsmesser, die sie in zahlreichen elektronischen Geräten integriert sind: vom Sensor für den Airbag bis hin zur Wasserwaage für das Smartphone.

Kontakt / Infos anfordern

Fordern Sie gratis weitere Informationen an:

Merkliste

Hier setzen Sie die nebenstehende News auf Ihre persönliche Merkliste

Mehr über KIT
Kontakt
Karlsruher Institut für Technologie (KIT)
Kaiserstraße 12
76131 Karlsruhe
Deutschland
Tel.
+49721608-0
Fax
+49721608-4290
  • News

    Diamant als Baustoff für optische Schaltkreise

    Der Einsatz von Licht zur Informationsverarbeitung öffnet viele Möglichkeiten. Um die Photonen des Lichts jedoch gezielt in Schaltkreisen und Sensoren einzusetzen, werden Materialien benötigt, die die richtigen optischen und mechanischen Eigenschaften mitbringen. Forscher am Karlsruher Inst ... mehr

    Algen-Forschungszentrum in Australien

    Erdgas und Erdöl sind wertvolle Rohstoffe für Verkehr, Stromversorgung und chemische Industrie. Da sie jedoch begrenzt sind und ihr Verbrauch den Klimawandel antreibt, werden Alternativen für die Zukunft benötigt. Algen könnten die Lücke schließen. Der Ministerpräsident des australischen Bu ... mehr

    Jülich an neuem Batterieforschungsprojekt beteiligt

    Im Forschungsverbund „MEET Hi-EnD“ arbeiten Wissenschaftlerinnen und Wissenschaftler daran, Batterien mit deutlich höheren Energiedichten zu entwickeln. Ziel: ein breiter Einstieg in die Elektromobilität. Das Bundesministerium für Bildung und Forschung (BMBF) fördert das Projekt im Rahmen d ... mehr

  • Forschungsinstitute

    Karlsruher Institut für Technologie (KIT)

    Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts und staatliche Einrichtung des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das ... mehr

Mehr über Fraunhofer-Institut IAF
Kontakt
Fraunhofer-Institut für Angewandte Festkörperphysik (IAF)
Tullastrasse 72
79108 Freiburg im Breisgau
Deutschland
Tel.
+497615159-0
Fax
+497615159-400
  • News

    Diamant als Baustoff für optische Schaltkreise

    Der Einsatz von Licht zur Informationsverarbeitung öffnet viele Möglichkeiten. Um die Photonen des Lichts jedoch gezielt in Schaltkreisen und Sensoren einzusetzen, werden Materialien benötigt, die die richtigen optischen und mechanischen Eigenschaften mitbringen. Forscher am Karlsruher Inst ... mehr

    Kompaktes Radar mit Durchblick

    Durch Holz, Pappe oder Kunststoff schauen – das gelingt dem menschlichen Auge nicht. Was uns verborgen bleibt, macht ein kompaktes, modular aufgebautes Radar sichtbar: Der Millimeterwellensensor durchdringt nicht transparente Stoffe. Er sendet im Hochfrequenzbereich zwischen 75 und 110 GHz ... mehr

    Halbleiter Galliumnitrid spart Energie in Elektroautos und Solaranlagen

    Der Einsatz des Halbleiters Galliumnitrid in der Elektronik von Autos und Solaranlagen kann deutlich Energie sparen. Die elektronischen Bauteile sind effizienter, kleiner und benötigen weniger Kühlung als die vorherrschenden Silizium-Komponenten. Forscher des Fraunhofer-Instituts für Angewa ... mehr

  • Forschungsinstitute

    Fraunhofer-Institut für Angewandte Festkörperphysik (IAF)

    Das Fraunhofer-Institut für Angewandte Festkörperphysik IAF versteht sich als ein wichtiger Baustein zur Entwicklung und Realisierung von Innovationen, die das Leben vieler Menschen besser und lebenswerter machen. Durch die Entwicklungen nanoelektronischer Schaltungen aus Verbindungshalblei ... mehr

Mehr über Fraunhofer-Gesellschaft
Kontakt
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Hansastraße 27 c
80686 München
Deutschland
Tel.
+49891205-0
Fax
+49891205-7531
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.