Meine Merkliste
my.chemie.de  
Login  

Geheimnissen von explodierenden Clustern auf der Spur

26.02.2014

MBI

Flugzeit-Spektrum für Xenon-Atome und Cluster mit einer durchschnittlichen Größe von 36000 Atomen. Für Cluster werden größere Fragmente wie Dimere und Trimere beobachtet.

MBI

Linke Seite: 2D Impulsabbildung der Elektronen von Argon Clustern. Rechte Seite: Das Spektrum der kinetischen Energie (schwarze Kurve) zeigt eine gute Übereinstimmung mit numerischen Simulationen.

Die Untersuchung der Dynamik von Cluster-Explosionen mit Hilfe von intensiven extrem-ultravioletten (XUV) Pulsen war bisher begrenzt auf Großforschungsgeräte wie Freie Elektronen Laser. In einer kürzlichen Publikation wurde gezeigt, dass die Erforschung von Clustern jetzt auch mit intensiven XUV Pulsen in einem Labor mit einer neuentwickelten Lichtquelle möglich ist, die auf der Erzeugung von Höheren Harmonischen basiert. Das erste Mal wurde die Formierung von hoch angeregten Rydberg-Atomen durch Elektron-Ion-Rekombination während der Expansion von Clustern nachgewiesen, die anfänglich durch einen XUV-Puls ausgelöst wurde und die neue Einblicke in den Zersetzungsprozess des Clusters bietet.

Ein intensiver Lichtpuls, der mit schwach gebundenen van-der-Waals Clustern bestehend aus Tausenden von Atomen wechselwirkt, kann schließlich zu der Explosion des Clusters und dessen vollständiger Zersetzung führen. Während dieses Prozesses treten neuartige Ionisationsmechanismen auf, die nicht in Atomen beobachtet werden. Mit einem ausreichend intensiven Lichtpuls werden viele Elektronen von ihren Atomen losgelöst, die sich innerhalb des Clusters bewegen können und ein Plasma mit den Ionen auf einer Nanometer-Skala formen, ein sogenanntes Nanoplasma. Durch Kollisionen zwischen den Elektronen können einige von ihnen schließlich ausreichend Energie erhalten, um dem Cluster zu entfliehen. Ein Großteil der Elektronen bleibt jedoch gefangen im Cluster. Es wurde theoretisch vorhergesagt, dass im Nanoplasma Elektronen mit Ionen rekombinieren, um Rydberg-Atome zu formen, es gibt jedoch noch keinen experimentellen Beweis für diese Hypothese.

Vorhergehende Experimente wurden an Großforschungsanlagen wie Freien Elektronen Lasern durchgeführt, die eine Größe von Hunderten von Metern bis hin zu Kilometern haben, und bereits überraschende Ergebnisse gezeigt haben wie z.B. die Erzeugung von sehr hohen Ladungszuständen, wenn ein intensiver XUV-Puls mit einem Cluster wechselwirkt. Der Zugang zu diesen Einrichtungen ist jedoch stark begrenzt, und die experimentellen Bedingungen sind extrem herausfordernd. Von daher ist die Verfügbarkeit von intensiven Lichtpulsen im extrem-ultravioletten Bereich aus anderen Quellen wichtig, um ein besseres Verständnis der verschiedenen Prozesse zu erlangen, die in Clustern und anderen ausgedehnten Objekten wie Bio-Molekülen stattfinden, wenn sie intensiven XUV-Pulsen ausgesetzt sind.

Wissenschaftler des Max-Born-Instituts haben eine Lichtquelle basierend auf dem Prozess der Höheren Harmonischen Erzeugung entwickelt. Ein intensiver Lichtpuls im extrem-ultravioletten Bereich mit einer Dauer von 15 fs (1 fs=10 hoch -15 s) hat im Experiment mit Clustern interagiert, die aus Argon- und Xenon-Atomen bestanden. In der aktuellen Ausgabe von Physical Review Letters (Vol. 112-073003 publ. 20 February 2014) präsentieren Bernd Schütte, Marc Vrakking und Arnaud Rouzée die Ergebnisse dieser Untersuchungen, die eine sehr gute Übereinstimmung mit vorher erzielten Ergebnissen von Freien Elektronen Lasern zeigen. In Zusammenarbeit mit den Theoretikern Mathias Arbeiter und Thomas Fennel von der Universität Rostock war es möglich, die Ionisationsprozesse im Cluster numerisch zu simulieren und die experimentellen Ergebnisse zu reproduzieren. Desweitern wurde durch den Einsatz der sogenannten Velocity Map Imaging Technik eine bisher unentdeckte Verteilung von sehr langsamen Elektronen beobachtet, die auf die Formierung von hoch angeregten Rydberg-Atomen durch Elektron-Ion Rekombinationsprozesse während der Cluster-Expansion schließen lässt. Aufgrund der geringen Bindungsenergie der Elektronen ist das statische elektrische Feld des Detektors ausreichend stark, um die Rydberg-Atome zu ionisieren, was zur Emission von sehr langsamen Elektronen führt. Dieser Prozess ist auch bekannt als Frustrierte Rekombination und konnte experimentell nun das erste Mal nachgewiesen werden. Die aktuellen Ergebnisse könnten auch erklären, warum in vorherigen Experimenten mit intensiven Röntgen-Pulsen hohe Ladungszustände bis zu Xe26+ in Clustern beobachtet wurden, obwohl eine Vielzahl an Rekombinationsprozessen erwartet wird. Desweiteren bietet ein Experiment basierend auf einer Höheren Harmonischen Quelle in der Zukunft die Möglichkeit, Anrege-Abfrage Experimente in Clustern und anderen ausgedehnten Objekten durchzuführen mit einer zeitlichen Auflösung bis hinunter in den Attosekunden-Bereich.

Originalveröffentlichung:

Bernd Schütte, Mathias Arbeiter, Thomas Fennel, Marc J. J. Vrakking and Arnaud Rouzée, "Rare-gas clusters in intense extreme-ultraviolet pulses from a high-order harmonic source", Physical Review Letters 112, (2014)

Mehr über MBI
  • News

    Makroskopische elektrische Polarisationen und Elektronen auf atomarer Skala

    Röntgenexperimente im Femtosekunden-Bereich und ein neuer theoretischer Ansatz stellen eine direkte Verbindung zwischen elektrischen Eigenschaften makroskopischer Systeme und Elektronenbewegungen auf atomaren Längen- und Zeitskalen her. Die Ergebnisse eröffnen neue Wege zu Verständnis und O ... mehr

    Langsam, aber effizient

    In den letzten 30 Jahren wurden die Wechselwirkungen zwischen intensiven Lasern und Clustern in erster Linie als ein vielversprechender Weg angesehen, um hochenergetische Ionen und Elektronen zu erzeugen. In überraschendem Gegensatz zu diesem bis heute vorherrschenden Paradigma hat ein Fors ... mehr

    Konzepte für neue schaltbare plasmonische Nanobauteile

    Plasmonische Wellenleiter eröffnen die Möglichkeit zur Entwicklung dramatisch verkleinerter optischer Bauteile und liefern eine vielversprechende Route zu zukünftigen Technologien für integrierte Schaltkreise für die Informationsverarbeitung, für optisches Computing und andere. Hauptelement ... mehr

  • Forschungsinstitute

    Max-Born-Institut (MBI) im Forschungsverbund Berlin e.V

    Das Max-Born-Instiitut (MBI) betreibt Grundlagenforschung auf dem Gebiet der nichtlinearen Optik und Kurzzeitdynamik bei der Wechselwirkung von Materie mit Laserlicht und verfolgt daraus resultierende Anwendungsaspekte. Es entwickelt und nutzt hierzu ultrakurze und ultraintensive Laser und ... mehr

Mehr über Forschungsverbund Berlin
  • News

    Makroskopische elektrische Polarisationen und Elektronen auf atomarer Skala

    Röntgenexperimente im Femtosekunden-Bereich und ein neuer theoretischer Ansatz stellen eine direkte Verbindung zwischen elektrischen Eigenschaften makroskopischer Systeme und Elektronenbewegungen auf atomaren Längen- und Zeitskalen her. Die Ergebnisse eröffnen neue Wege zu Verständnis und O ... mehr

    Langsam, aber effizient

    In den letzten 30 Jahren wurden die Wechselwirkungen zwischen intensiven Lasern und Clustern in erster Linie als ein vielversprechender Weg angesehen, um hochenergetische Ionen und Elektronen zu erzeugen. In überraschendem Gegensatz zu diesem bis heute vorherrschenden Paradigma hat ein Fors ... mehr

    Lasergetriebene Elektronenrekollision erinnert sich an die Molekülorbitalstruktur

    Wissenschaftler vom Max-Born-Institut in Berlin haben durch eine Kombination modernster Experimente und numerischer Simulationen eine grundlegende Annahme der Starkfeld-Physik untersucht. Ihre Ergebnisse verfeinern unser Verständnis von starkfeldgetriebenen Prozessen, wie der Erzeugung hohe ... mehr

  • Verbände

    Forschungsverbund Berlin e.V.

    Der Forschungsverbund Berlin e.V. (FVB) ist Träger von insgesamt acht natur-, lebens- und umweltwissenschaftlichen Forschungsinstituten in Berlin, die unter Wahrung ihrer wissenschaftlichen Eigenständigkeit im Rahmen einer einheitlichen Rechtspersönlichkeit gemeinsame Interessen wahrnehmen. ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.