Der Tanz der Nanowirbel

04.02.2015 - Deutschland

Das Phänomen ist bekannt: Wenn ein Kreisel angeschubst wird oder auf einer geneigten Fläche rotiert, bewegt er sich meist nicht geradlinig vorwärts, sondern beschreibt kleine Bögen. Forschern der TU Berlin und der Universität Mainz ist es zusammen mit Forschungsteams aus den Niederlanden und der Schweiz nun gelungen, solche Bewegungsmuster auch in einem magnetischen Schichtsystem sichtbar zu machen – und zwar in Form von kleinen magnetischen Nanowirbeln. Dabei stießen die Forscher auf einen neuen Befund: Die Nanowirbel besitzen eine Masse. Der Artikel wird in der Fachzeitschrift „Nature Physics“ publiziert.

© Grafik: B. Krüger

Der dünne magnetische Film wird hier als graue Scheibe gezeigt. Seine lokale Magnetisierung verdeutlichen die kleinen Pfeile. In der Mitte befindet sich ein magnetischer Wirbel. Ein Nanodraht aus Gold in Form eines „Omegas“ umgibt die Magnetschicht. Ein kurzer Strompuls durch diesen Nanodraht lenkt das „Skyrmion“ (blaue Kugel) aus seiner Ruhelage aus. Auf einer Spiralbahn bewegt es sich zurück in seine Ausgangsposition. Dies lässt sich mit Hilfe der Röntgenholografie beobachten. Die spiralförmige Bahn und das Skyrmion sind schematisch oberhalb der Struktur dargestellt.

„Die magnetischen Nanowirbel können wir mit Hilfe von Magnetfeldern gezielt erzeugen und dann ‚anschubsen‘, sodass sie aus ihrer Gleichgewichtslage herausgelenkt werden“, erklärt Dr. Felix Büttner, der diese Forschungen in seiner Doktorarbeit vorangetrieben hat. „Wir konnten dann sehr genau verfolgen, auf welchem Weg diese Skyrmionen, wie diese besonderen Nanowirbel genannt werden, sich in ihre Ruhelage zurückbewegen“, so Büttner weiter. Die Wirbel entstehen in dünnen magnetischen Schichtsystemen, in denen abwechselnd Lagen aus einer Kobalt-Bor Legierung und Platin-Schichten übereinandergestapelt sind. Jede Einzelschicht ist weniger als ein Nanometer dick. Dadurch entstehen besondere magnetische Eigenschaften. Der Durchmesser dieser magnetischen Wirbel ist nicht größer als 100 Nanometer. Das ist etwa ein Tausendstel eines Haardurchmessers.

Mit einer besonderen Technik gelang es den Forschern, die Bewegung der Skyrmionen mit einer Präzision von wenigen Nanometern in Zeitabständen von weniger als einer Nanosekunde aufzunehmen und zu dokumentieren. Ermöglicht wurde dies durch holografische Aufnahmetechniken mittels intensiver Röntgenpulse an der Berliner Synchrotronquelle BESSY II am Helmholtz-Zentrum Berlin (HZB). Diese holografischen Aufnahmetechniken sind am TU-Fachgebiet „Nanometeroptik und Röntgenstreuung“ von Prof. Dr. Stefan Eisebitt gemeinsam mit dem HZB über Jahre weiterentwickelt worden.

Was Büttner und seine Mitstreiter in den Röntgenhologrammen sahen, war bemerkenswert: „Ähnlich wie ein angestoßener Kreisel bewegt sich der Nanowirbel nicht geradlinig, sondern auf einer spiralförmigen Bahn“, erklärt Büttner. „Durch den Vergleich unserer Messungen mit Modellrechnungen stellten wir fest, dass sich diese spiralförmige Bewegung nur erklären lässt, wenn das Skyrmion eine Masse besitzt.“

Dies ist ein wichtiger Befund, da die hier beobachteten Nanowirbel nur eine spezielle Art von in der Natur zu findenden Skyrmionen sind. „Skyrmionen wurden in der Vergangenheit vielfach als Teilchen ohne Masse beschrieben“, erläutert Christoforos Moutafis vom Paul Scherrer Institut, der sich schon lange mit der theoretischen Beschreibung solcher Strukturen auseinandersetzt. Daher wird das in dieser Arbeit etablierte „Konzept“ von Masse auch zum Verständnis dieser Teilchen beitragen, wie die Forscher in der Fachzeitschrift „Nature Physics“ darlegen.

Speziell diese magnetischen Nanowirbel in dünnen magnetischen Schichten könnten auch für konkrete Anwendungen in Frage kommen: Sie werden bereits heute als alternative Informationsträger in der Datenspeicherung und -verarbeitung diskutiert. Forscher vermuten, dass sich aufgrund ihrer „Wirbeleigenschaft“ Bits, also Informationseinheiten, auf kleinerem Raum und deutlich stabiler als bisher speichern und bewegen lassen. Möglicherweise können nun die neuen Einsichten in das Verhalten der Skyrmionen dazu beitragen, solche neuartigen Konzepte für die Informationsverarbeitung zu verwirklichen.

Originalveröffentlichung

„Dynamics and inertia of skyrmionic spin structures“, Felix Büttner et al.; Nature Physics

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Entdecken Sie die neuesten Entwicklungen in der Batterietechnologie!