Meine Merkliste
my.chemie.de  
Login  

Metallmäntel optimieren chemische Reaktionen

02.07.2015

© Fraunhofer IKTS

Schüttgut ist Massenware in der chemischen Industrie. Das Fraunhofer IKTS schützt die millimetergroßen Partikel jetzt mit einem Metallmantel. Das erhöht ihre Wärmeleitfähigkeit um das Fünffache.

Für die chemische Industrie sind sie Massenware: Aufgeschüttete Füllkörper, die als Katalysator oder Adsorptionsmittel in Reaktoren und Wärmespeichern eingesetzt werden. Fraunhofer-Forscher entwickelten einen Metallmantel für die einzelnen Füllkörper, der ihre Wärmeleitfähigkeit um das Fünffache erhöht.

Viele chemische Reaktionen und Wärmespeicher nutzen aufgeschüttete Füllkörper als Katalysator oder Adsorptionsmittel. Die Industrie setzt mehrere Millionen Tonnen dieser Funktionsmaterialien im Jahr ein, um ihre Grundstoffe herzustellen. Damit die Reaktionen wie gewünscht ablaufen, müssen die Füllkörper besonders wärmeleitfähig sein. Das Problem: Zwischen den nur wenigen Millimeter großen Körpern lässt sich die Wärme nicht optimal weiterleiten. Die Chemieunternehmen müssen daher zusätzliche wärmeleitende Strukturen in ihre Reaktoren einbauen. »Das ist aufwändig und teuer«, sagt Jörg Adler, Forscher am Fraunhofer-Institut für Keramische Technologien und Systeme IKTS in Dresden. Zusammen mit Kollegen der Fraunhofer-Institute für Werkzeugmaschinen und Umformtechnik IWU in Chemnitz und für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart entwickelte Adler ein Konzept, das die Wärmeleitfähigkeit der aufgeschütteten Materialien um das Fünffache erhöht. Dafür haben die Wissenschaftler zylinderförmige Füllkörper mit Metall ummantelt: Die Metallhüllen der einzelnen Körper berühren sich und bilden so ein metallisches Gerüst über die gesamte Schüttung aus, in dem sich Wärme schneller und effizienter ausbreiten kann.

Wirkungsgrad um das Fünffache erhöht

Den Effizienzsprung haben die Wissenschaftler im Labor mit einer acht Liter großen Schüttung aus Aluminium-ummantelten Zeolith-Füllkörpern bei einem Wärmespeicher nachgewiesen. Adler beschreibt die Vorteile: »Die Schüttung ist schneller gleichmäßig warm. Das Entladen und Beladen des Wärmespeichers geht deutlich schneller. Bei chemischen Reaktionen würde sich die Effizienz und damit die Produktgüte erhöhen.« Die Forscher gehen davon aus, dass der Effekt mit einem Metall, das noch besser Wärme leitet – zum Beispiel Kupfer, weiter ausgebaut werden kann. Die Schüttkörper aus dem Labor haben eine Länge von fünf Millimetern. Die sie ummantelnde Aluminiumschicht ist 0,25 Millimeter dick. Die Wissenschaftler stellen sie in einem eigens dafür entwickelten massentauglichen Verfahren her: Sie füllen lange Metallrohre mit dem Schüttmaterial, verdichten es, damit es nicht herausrutscht und zerschneiden die Rohre dann zu einzelnen, wenige Millimeter langen Zylindern.

»Die chemische Industrie nutzt Schüttkörper in großen Mengen und über längere Zeit hinweg. Idealerweise verbleiben sie mehrere Jahre in den Reaktoren. Ein Problem bei Transport und Anwendung ist pulverförmiger Abrieb: Dieser entsteht durch die Bewegungen der Schüttkörper gegeneinander. Die Metallhülle schützt die Schüttkörper vor Abrieb und erhöht so ihre Lebensdauer«, so Adler.

Mit Wasser getränkte Schüttkörper aus Zeolith trocknen bei Wärmezufuhr und nehmen die Wärme auf. Befeuchtet man sie, geben sie diese wieder ab. Dieser physikalische Effekt qualifiziert sie auch für den Einsatz in Wärmespeichern. »Die Effizienz dieses Prozesses hängt ebenfalls von der Wärmeleitfähigkeit des Zeolith ab. Oft müssen sehr aufwändige Wärmetauscher-Konstruktionen installiert werden, die teuer sind und dem eigentlichen Wärmespeicher Volumen wegnehmen. Hier können die Metall-ummantelten Füllkörper Mehrwert schaffen. Im Labor haben wir die Zyklenzeit des Wärmespeichers deutlich verkürzt«, sagt Adler.

Machbarkeit und Funktion der Ummantelung konnten im Labor gezeigt werden. Jetzt wollen die Forscher die nächsten Schritte Richtung industrielle Anwendung gehen. »Wir müssen Material und Herstellung noch weiter optimieren und nachweisen, in welchem Ausmaß genau der Nutzen der höheren Wärmeleitfähigkeit die zusätzlichen Kosten der Metall-Ummantelung übersteigt«, so Adler.

Aufgeschüttete Füllkörper aus Katalysatorstoffen oder Adsorptionsmitteln (Sorbentien) sind Massenware in der chemischen Industrie. Katalysatoren fördern chemische Reaktionen ohne dabei selbst aufgebraucht zu werden. Sorbentien nehmen bestimmte Produkte auf und speichern sie in sich. Die Füllkörper kommen beispielsweise zum Einsatz, um chemische Reaktionen zu optimieren oder sind Bestandteil von modernen Wärmespeichern. Dabei wird das Material in einem Reaktor mit einer Flüssigkeit oder einem Gas durchströmt, die an der Oberfläche der winzigen Körper eine chemische Reaktion auslösen.

Fakten, Hintergründe, Dossiers
Mehr über Fraunhofer-Institut IKTS
Mehr über Fraunhofer-Institut IWU
  • News

    Highspeed-3D-Drucker für Hochleistungskunststoffe

    Die additive Fertigung großvolumiger Kunststoffbauteile ist zeitaufwändig. Forscher des Fraunhofer-Instituts für Werkzeugmaschinen und Umformtechnik IWU haben nun mit SEAM (Screw Extrusion Additive Manufacturing) ein System und Verfahren entwickelt, das im Vergleich zum herkömmlichem 3D-Dru ... mehr

    So leicht wie Kunststoff, so stabil wie Metall

    Strukturleichtbau in Kombination mit hybriden Materialverbunden aus Kunststoffen und Metallen sind die Grundvoraussetzungen für Energieeinspaarungen in Industrie und Technik. Ein Verfahren, mit dem die Herstellung energieeffizienter Bauteile möglich wird, ist das thermische Spritzen. "Die B ... mehr

    Rostfrei - auch ohne Chrom

    Lange Zeit schützten Chromatschichten Autokarosserien vor Rost - seit 2007 sind sie jedoch verboten. Chromatfreie Beschichtungen lassen sich jedoch nicht universell einsetzen, sie müssen an die jeweilige Anwendung angepasst werden. Eine neue Beschichtung verspricht Abhilfe. Damit die Verwe ... mehr

  • Forschungsinstitute

    Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik (IWU)

    Wir sind Ihr Forschungs- und Entwicklungspartner auf dem Gebiet der Produktionstechnik für den Automobil- und Maschinenbausektor. Schwerpunkte unserer Forschung sind die Entwicklung intelligenter Produktionsanlagen zur Herstellung von Karosserie- und Powertrain-Komponenten sowie die Optimi ... mehr

Mehr über Fraunhofer-Institut IGB
  • News

    Pilze als Produzenten für Alltagsprodukte

    Reinigungsmittel, Kosmetik, Kleidung und Co. basieren meist auf Erdöl – ökologisch sind diese Alltagsprodukte nicht. Über Pilze lassen sich biobasierte, CO2-neutrale Basischemikalien für solche Waren herstellen. Fraunhofer-Forscherteams legen Fementationsprozesse und Herstellungsverfahren f ... mehr

    Vom Holzabfall zum Hochleistungskunststoff

    Der Naturstoff 3-Caren fällt als Bestandteil von Terpentinöl bei der Herstellung von Zellstoff aus Holz an. Bislang wird das Nebenprodukt vor allem verbrannt. Mit neuen katalytischen Verfahren setzen Fraunhofer-Forscher 3-Caren zu Bausteinen für biobasierte Kunststoffe um. Die daraus herges ... mehr

    Fraunhofer liefert Lignin für biobasierte Wertstoffe

    Mit hochreinem Lignin aus der Lignocellulose-Bioraffinerie am Fraunhofer-Zentrum für Chemisch-Biotechnologische Prozesse CBP in Leuna haben Forscher an der Technischen Universität Hamburg-Harburg (TU HH) ligninhaltige Aerogele hergestellt und zu hochporäsen Dämmstoffplatten mit hervorragend ... mehr

  • Forschungsinstitute

    Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik (IGB)

    Das Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB erarbeitet für die Wirtschaft und öffentliche Auftraggeber Problemlösungen in den Bereichen Gesundheit, Umwelt und Technik. Zu unseren Kompetenzen zählen Grenzflächentechnik, Membrantechnik, Biotechnologie und Zellsystem ... mehr

Mehr über Fraunhofer-Gesellschaft
  • News

    Schlüsselkomponente für Batterien der Zukunft

    Wissenschaftler des Fraunhofer IWS um Dr. Holger Althues haben ein innovatives Verfahren zur kosteneffizienten Herstellung dünner Lithiumanoden aus geschmolzenem Lithium entwickelt. In dem vom BMBF geförderten Projekt »MaLiBa« arbeitet das Dresdner Institut mit den Unternehmen hpulcas und d ... mehr

    Synthesekautschuk übertrifft Naturkautschuk

    Natürlicher Kautschuk aus Kautschukbäumen ist ein begrenzter Rohstoff. Synthetisch hergestellter Kautschuk reicht bisher im Abriebverhalten jedoch nicht an das natürliche Produkt heran und eignet sich daher nicht für LKW-Reifen. Ein neuartiger Synthesekautschuk erzeugt nun erstmals 30 bis 5 ... mehr

    Mit Laserlicht zur gedruckten Elektronikvielfalt

    Die Ansprüche an die bauteilintegrierte Elektronik sind in den letzten Jahren in vielen Branchen so stark gestiegen, dass sie sich oft nicht mehr mit konventionellen Elektronikkomponenten realisieren lassen. Als Alternative befindet sich die gedruckte Elektronik auf dem Vormarsch. Welche Ro ... mehr

  • Videos

    Effektive Abwasserreinigung durch Nanofiltration

    Wasser ist lebenswichtig – Abwässer müssen daher möglichst effizient gereinigt werden. Möglich machen das keramische Membranen, mit denen erstmalig 200 Dalton kleine Moleküle abtrennbar sind. Dieses Video zeigt, dass sich hiermit auch Industrie-Abwässer effizient reinigen lassen.Dr. rer. na ... mehr

    Flüssigkristalle als Schmierstoffe

    Schmierstoffe sind fast überall im Einsatz – in Motoren, Produktionsmaschinen, Getrieben, Ventilen. Obwohl sie in nahezu allen Maschinen für einen ruhigen Lauf sorgen, gab es auf diesem Gebiet in den vergangenen beiden Jahrzehnten keine grundlegenden Innovationen. Das Fraunhofer-Institut fü ... mehr

    Briefkontrolle mit Terahertz-Wellen

    Bislang ist es recht aufwändig, Briefe sicher und zuverlässig auf gefährliche Inhaltsstoffe wie Sprengstoffe oder Drogen hin zu untersuchen. Abhilfe könnte ein neuer Terahertz-Scanner schaffen. Forscher des Fraunhofer-Instituts für Physikalische Messtechnik IPM in Kaiserslautern und der Hüb ... mehr

  • Forschungsinstitute

    Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.

    Die Fraunhofer-Gesellschaft ist die führende Organisation für angewandte Forschung in Europa. Unter ihrem Dach arbeiten 59 Institute an über 40 Standorten in ganz Deutschland. Rund 17 000 Mitarbeiterinnen und Mitarbeiter erzielen das jährliche Forschungsvolumen von 1,5 Mrd Euro. Davon erwir ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.