Meine Merkliste
my.chemie.de  
Login  

Moleküle von Geruchsstoffen zeigen unerwartete Flexibilität

Hochaufgelöste Rotationsspektroskopie offenbart eine beispiellose Zahl von Konformationen eines Geruchsstoffmoleküls – ein neuer Weltrekord!

29.06.2016

© S. R. Domingos / MPI for the Structure and Dynamics of Matter

Struktur der stabilsten, kugelähnlichen Form von Citronellal.

Forscher des Max-Planck-Instituts für Struktur und Dynamik der Materie am Center for Free-Electron Laser Science und des Hamburg Centre for Ultrafast Imaging (CUI) unter der Leitung von Melanie Schnell haben die komplexe Konformationslandschaft eines duftenden Biomoleküls entschlüsselt.

Die Wissenschaft des Geruchssinns gibt bis heute Rätsel auf, und die Frage wie unser Körper Gerüche interpretiert ist immer noch aktuelles Thema weltweiter Debatten. Wir wissen immerhin so viel: Die Funktion eines bestimmten Biomoleküls ist unmittelbar davon abhängig, wie dieses Molekül in den jeweiligen biologischen Rezeptor „hineinpasst“ – so wie ein Schlüssel, der nur ein bestimmtes Türschloss schließt. Viele biochemische Prozesse werden durch dieses sogenannte Schlüssel-Schloss-Prinzip gesteuert. Die Größe, Form und Flexibilität des Schlüssels bestimmen, wie gut er sich an sein Ziel binden kann: Kann er das richtige Schloss öffnen oder nicht?

Um Aufschluss über diese Mechanismen zu erhalten, haben die Forscher eine hochaufgelöste rotationsspektroskopische Untersuchung von Citronellal durchgeführt – einem vielseitigen biochemischen Ausgangsstoff, der in vielen ätherischen Ölen natürlich auftritt. Er hat einen ausgeprägten Zitronenduft und wird häufig in der kosmetischen Industrie eingesetzt.

Die Forscher entdeckten, dass dieses Molekül eine beachtliche Zahl von Formen, sogenannte Konformationen, annehmen kann, allein durch Rotationen um fünf verschiedene Kohlenstoff-Kohlenstoff-Einfachbindungen. Diese miteinander abgestimmten Rotationen führen zu einer außergewöhnlich großen Zahl stabiler Formen des Moleküls. Insgesamt konnten fünfzehn Formen identifiziert werden. „Wir haben Anhaltspunkte dafür, dass dieses unglaublich flexible System eine Vorliebe für kugelförmige Strukturen hat, sich also bevorzugt ineinander faltet“, sagt Sérgio Domingos, Erstautor der Arbeit. „Diese Beobachtung erlaubte es uns, wichtige Informationen bezüglich der möglichen Wechselwirkungen dieses Moleküls mit biologischen Rezeptoren abzuleiten.“

Die Zahl der Konformationen (Schlüssel), welche bei diesem Molekül beobachtet wurden, stellt einen Weltrekord in der Fachwelt der Mikrowellenspektroskopie dar. „Die außergewöhnliche Fähigkeit dieses Duftmoleküls, seine Form zu verändern, erlaubt besondere Einblicke in die Beziehung zwischen Struktur und Funktion eines Biomoleküls. Wir haben nicht nur fünfzehn Schlüssel gefunden, sondern haben nun auch ein besseres Verständnis, welche von ihnen besser in das Schloss passen könnten“, sagt Gruppenleiterin Melanie Schnell abschließend.

Fakten, Hintergründe, Dossiers
  • MPI für Struktur un…
  • Biomoleküle
  • Geruchssinn
  • Rotationsspektroskopie
  • Citronellal
  • Konformationen
  • Mikrowellenspektroskopie
Mehr über Max-Planck-Institut für Struktur und Dynamik der Materie
Mehr über Max-Planck-Gesellschaft
  • News

    Exzellenz neu bündeln: Start für erste Max Planck Schools

    2018 starten zunächst drei ausgewählte Max Planck Schools in eine fünfjährige Pilotphase. Jede School bündelt die deutschlandweit verteilte Exzellenz zu einem innovativen Forschungsfeld. Diese intelligente Vernetzung soll der deutschen Wissenschaft international noch mehr Sichtbarkeit im in ... mehr

    Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

    In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtun ... mehr

    Enzyme und ihre Bewegungen ohne Marker direkt beobachten

    Biologie und Medizin dürften davon sehr profitieren: Forscher des Max-Planck-Instituts für die Physik des Lichtes in Erlangen haben eine Methode entwickelt, um die Arbeitsweise von Enzymen und anderen Biomolekülen direkt zu beobachten. Damit haben sie unter anderem zum ersten Mal alleine mi ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.