Meine Merkliste
my.chemie.de  
Login  

Elektrischer Strom im Rekordtempo

Wissenschaftler erzeugen die schnellsten jemals gemessenen elektrischen Ströme in Festkörpern

27.10.2016

© MPI of Quantum Optics/ Attoelectronics

Lichtpulse erzeugen elektrische Ströme, die mit PHz-Frequenzen schwingen. Die dabei ausgestrahlte EUV-Strahlung erlaubt es, diese elektrischen Ströme in Echtzeit aufzuzeichnen.

In der Elektronik gilt: Je kleiner, desto schneller. Manche Bauteile von Computern oder Mobilfunkgeräten sind heute jedoch so winzig, dass sie nur noch aus einer Handvoll von Atomen bestehen. Viel weiter verkleinern lassen sie sich also nicht mehr. Ein anderer wichtiger Faktor für die Leistungsfähigkeit elektronischer Geräte, ist die Geschwindigkeit, mit der die elektrischen Ströme schwingen. Wissenschaftler vom Max-Planck-Institut für Quantenoptik in Garching haben nun Ströme erzeugt, die die Frequenz des sichtbaren Lichtes um mehr als das Zehnfache übertreffen. Dabei haben sie Elektronen von Siliziumdioxid mit kurzen Laserpulsen zum Schwingen gebracht. Die Leitfähigkeit des normalerweise isolierend wirkenden Materials stieg so um mehr als 19 Größenordnungen.

Seit mehr als hundert Jahren wollen Wissenschaftler konventionelle Stromquellen wie Batterien durch Licht ersetzen und so elektrische Ströme in Festkörpern erzeugen. Der Versuch, in Festkörpern durch Lichteinstrahlung elektrische Ströme hervorzurufen, blieb aber jahrzehntelang erfolglos. „Inzwischen können wir aber mit Lasern Materie immer besser kontrollieren und Lichtfelder immer genauer messen“, erklärt Eleftherios Goulielmakis, Leiter der Forschungsgruppe Attoelectronics am Garchinger Max-Planck-Institut.

Konventionelle elektronische Techniken können so schnelle elektrische Ströme weder erzeugen noch erfassen, denn in herkömmlichen Schaltkreisen werden die Elektronen von dem elektrischen Feld der Stromquellen, etwa Batterien, zu Schwingungen angestoßen. Auch wenn alle Elektronen anfangs der Kraft des Batteriefeldes folgen, stoßen sie gelegentlich mit langsameren Teilchen wie Atomen oder Ionen zusammen und verlieren dadurch ihre Synchronizität. Von intensiven Lichtfeldern dagegen werden die Elektronen in extrem kurzer Zeit beschleunigt. Deshalb geraten sie in Schwingungen und erzeugen elektrischen Strom, bevor ihnen andere Teilchen in die Quere kommen.

Die Forscher haben deshalb Laser für die Stromerzeugung verwendet. Diese können die Elektronen in Festkörpern in extrem schnelle Schwingungen versetzen. „Auch für die Messung der schnellen elektronischen Bewegung benutzen wir optische Techniken: Die im Siliziumdioxid synchron schwingenden Elektronen erzeugen nämlich extreme Ultraviolett-Strahlung. Es ist leichter, diese Strahlung zu messen als die Ströme direkt nachzuweisen“, sagt Manish Garg, einer der Autoren der Studie.

Die so nachgewiesenen Ströme sind etwa eine Million mal schneller als die in einem gängigen modernen Computerprozessor. Die Forscher wollen mit ihren Untersuchungen einerseits die physikalischen Grenzen ausloten. „Wenn sich Elektronen kohärent bewegen, strahlen sie Licht ab. Licht wiederum spielt in der Photonik die Schlüsselrolle. Deshalb können wir vielleicht zwei wichtige Bereiche der modernen Wissenschaft vereinigen: die Elektronik und die Photonik“, sagt Goulielmakis. Gleichzeitig könnte der Ansatz der Wissenschaftler den Weg für elektronische Geräte ebnen, die eine Million mal schneller als heutige sind.

Fakten, Hintergründe, Dossiers
  • Strom
  • Elektronik
  • MPI für Quantenoptik
Mehr über MPI für Quantenoptik
  • News

    Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

    Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftle ... mehr

    Quantenmagnete mit Löchern

    Magnetismus ist ein Phänomen, das uns vom Alltag her sehr vertraut ist. Er beruht darauf, dass in bestimmten Stoffen wie etwa Eisen die Spins der Elektronen einheitlich ausgerichtet sind. Besonders interessante Effekte treten auf, wenn magnetische Festkörperkristalle „Löcher“ aufweisen, d.h ... mehr

    Tumult im trägen Elektronen-Dasein

    Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds. Es herrscht also relative Ruhe im dielektrischen Kristallgitter. Dieses Idyll haben nun Physiker vom Labor für Attosekundenphysik (L ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für Quantenoptik

    Die Wechselwirkung von Licht und Materie unter extrem kontrollierten Bedingungen ist das gemeinsame Kennzeichen der fünf wissenschaftlichen Abteilungen am Max-Planck-Institut für Quantenoptik. Die Abt. Laserspektroskopie befasst sich mit der hochpräzisen Vermessung der Spektrallinien von Wa ... mehr

Mehr über Max-Planck-Gesellschaft
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.