Meine Merkliste
my.chemie.de  
Login  

Mikroplastik: Harmonisierung erforderlich!

Durch standardisierte Analytik lassen sich Menge, Qualität und Risiko von Mikroplastik in Wasser-Ökosystemen erfassen

09.01.2017

© Wiley-VCH

Seit den ersten Berichten über die dramatisch steigende Verschmutzung mit Mikroplastik in den Meeren wurde auch die weltweite Forschung dazu stark intensiviert. Ein Übersichtsartikel in der Zeitschrift Angewandte Chemie evaluiert die bisher geleisteten Studien kritisch. Demnach besteht eine dringende Notwendigkeit, die analytischen Methoden für eine bessere Vergleichbarkeit zu harmonisieren. Außerdem müssen auch Teilchen im unteren Mikrometerbereich und kleiner erfasst werden können, denn gerade diese gelten als besonders gefährlich.

Der Aufsatz von Natalia Ivleva, Alexandra Wiesheu und Reinhard Nießner von der Technischen Universität München beginnt mit der (zumindest für Außenstehende) recht bemerkenswerten Feststellung, dass die Forschung zum Mikroplastikgehalt im Süßwasserbereich noch ganz am Anfang steht, während das Meer bereits seit etwa zwanzig Jahren schon recht intensiv untersucht wird und es dazu auch erste (EU-) Harmonisierungsansätze gibt. Zudem lassen sich die Studien allgemein kaum vergleichen, weil teilweise sehr unterschiedliche analytische Methoden verwendet werden. Denoch deutet alles darauf hin, dass die Verschmutzung von Flüssen und Seen stark variiert, aber genauso alarmierend wie im Meer ist.

Ivleva und ihre Kollegen erläutern das derzeit verwendete Analytikprogramm mit allen Vor- und Nachteilen. So erfährt der Leser, dass trotz sehr vieler Falschresultate (sowohl Über- als auch Unterschätzung) die Untersuchung von Sediment- oder Wasserproben mit dem bloßen Auge eine wesentliche Rolle einnimmt. Dabei liegt die Untergrenze mit dieser Methode bei etwa 500 Mikrometern (0,5 mm), während die interessantesten – weil wahrscheinlich schädlichsten – Teilchen Größen von zwanzig Mikrometer und darunter haben. Andererseits gibt es bereits etablierte spektroskopische Verfahren, mit denen man die Natur von Plastikteilchen bis auf Mikrometergröße klar identifizieren kann, sofern bestimmte Bedingungen der Analyse erfüllt werden. Nach Meinung der Autoren sollten diese Spektroskopietechniken zusammen mit den schon bereits sehr erfolgreich eingesetzten thermoanalytischen Methoden in Zukunft sehr verlässliche Ergebnisse produzieren können. Eine beständige Weiterentwicklung und Optimierung sei aber unerlässlich.

Vor allem aber sei eine weitreichende Harmonisierung der Mikroplastik-Analytik nötig, eine Standardisierung der Prozesse von Probennnahme, Prozessierung, Identifizierung und Quantifizierung von Mikroplastik-Teilchen aus Wasser und Sedimenten. Diese Forderung untermauern die Autoren mit neun Argumenten, die für eine zuverlässige Datenerhebung zu den Risiken einer Verschmutzung mit Mikroplastik in Betracht gezogen werden müssen.

Neben dem analytisch-technischen Schwerpunkt diskutieren die Autoren auch die Mikroplastikaufnahme in lebenden Organismen. Ivleva und ihre Koautoren betonen, wie wichtig es ist, den Verbleib der potenziell gesundheitsschädlichen Additive wie Weichmacher, Füllstoffe, Flammschutzmittel etc. im Gewebe zu untersuchen. Der Artikel fügt zur derzeitigen Diskussion über die Verschmutzung von Meeres- und Süßwasserbiotopen wichtige Punkte hinzu und zeigt mögliche Lösungen für die Zukunft auf.

Fakten, Hintergründe, Dossiers
  • Mikroplastik
  • Wasserverschmutzung
  • TU München
  • Wasser
Mehr über TU München
  • News

    Bakterien produzieren Bio-Kunststoffe und Zwischenprodukte

    Im Juli 2015 richtete das Bayerische Staatsministerium für Umwelt und Verbraucherschutz den Projektverbund „Ressourcenschonende Biotechnologie in Bayern – BayBiotech“ ein. Ziel ist es, durch anwendungsbezogene Forschungsvorhaben im Bereich der Biotechnologie einen Beitrag zur Ressourcenscho ... mehr

    Ein perfektes Team für die Nanoelektronik

    Silizium-Nanoblätter sind dünne, zweidimensionale Schichten mit herausragenden optoelektronischen Eigenschaften, ähnlich denen des Graphens. Alleine sind sie jedoch instabil. Nun stellt ein Forscherteam der Technischen Universität München (TUM) erstmals ein Verbundmaterial aus den Silizium- ... mehr

    Löcher in der Elektrode

    Akkus, deren Kathode aus einer Mischung aus Nickel, Mangan, Kobalt und Lithium besteht, gelten derzeit als die leistungsfähigsten. Doch auch sie haben eine begrenzte Lebensdauer. Schon beim ersten Zyklus verlieren sie bis zu zehn Prozent ihrer Kapazität. Woran das liegt und was gegen den da ... mehr

  • Videos

    Scientists pair up two stars from the world of chemistry

    Many scientists consider graphene to be a wonder material. Now, a team of researchers at the Technical University of Munich (TUM) has succeeded in linking graphene with another important chemical group, the porphyrins. These new hybrid structures could also be used in the field of molecular ... mehr

  • Universitäten

    Technische Universität München

    Mit ihren 13 Fakultäten und 460 Professoren bildet die TUM in 133 Studiengängen ca. 25.000 Studierende aus, davon 20 Prozent aus dem Ausland. Die Schwerpunktfelder sind die Ingenieur- und Naturwissenschaften, Medizin und Lebenswissenschaften sowie die Wirtschaftswissenschaften und Lehrerbil ... mehr

    Technische Universität München im Wissenschaftszentrum Straubing

    mehr

  • q&more Artikel

    Translation

    Die Struktur der chemischen und pharmazeutischen Großindustrie hat sich gewandelt. Traditionelle Zentralforschungsabteilungen, in denen grundlagennahe Wissenschaft ­betrieben wurde, sind ökonomischen Renditebetrachtungen zum Opfer gefallen. mehr

    Molekülgenaue ­Detektivarbeit

    Die drei Ausdrücke im Titel ebenso wie „Known Unknowns“ und „Unknown Unknowns“ sind eingedeutschte Schlagwörter, die derzeit die analytische Wasserszene durcheinanderwirbeln. Die Vorgehensweise in der Nutzung eben dieser Technologien ist jedoch häufig noch nicht ­einheitlich. mehr

    Renaissance der ­kleinen Moleküle

    Pyruvat, Succinat, Fumarat, Oxalacetat, Mevalonat und Hydroxymethylgluta­ryl-CoA – wer erinnert sich nicht an seine ­Biochemieprüfungen. Allosterische ­Regulation, Substrate, Produkte, Metabolite. Gene­rationen von Biochemikern haben uns die Grundlage für das Verständnis von Stoffwechselvor ... mehr

  • Autoren

    Prof. Dr. Arne Skerra

    Arne Skerra, Jg. 1961, studierte Chemie an der TU Darmstadt und wurde 1989 zum Dr. rer. nat. am GenZentrum der LMU München promoviert. Nach Stationen am MRC Laboratory of Molecular Biology in Cambridge, Großbritannien und am Max-Planck-Institut für Bio­physik in Frankfurt/M. wurde er 2004 P ... mehr

    Dr. Thomas Letzel

    Thomas Letzel, geb. 1970, studierte Chemie (1992–1998) an der TU München sowie der LMU München und promovierte 2001 mit einem umweltanalytischen Thema an der TU München und absolvierte im Anschluss einen zweijährigen Postdoc-Aufenthalt an der Vrijen Universiteit Amsterdam. 2009 habilitierte ... mehr

    Prof. Dr. Hannelore Daniel

    Hannelore Daniel, Jg. 1954, studierte Ernährungswissenschaft an der Justus-Liebig-Universität Gießen und promovierte 1982. 1989 habilitierte Sie sich für Physiologie und Biochemie der Ernährung. Danach war sie bis Ende 1992 an der School of Medicine der Universität Pittsburgh (USA) tätig un ... mehr

Mehr über Angewandte Chemie
  • News

    Lärmende Kristalle

    Bestimmte organische Kristalle hüpfen herum, wenn sie erhitzt werden. Ursache ist ein extrem rascher Wechsel ihrer Kristallstruktur. Wissenschaftler zeigen in der Zeitschrift Angewandte Chemie, dass die Kristalle während dieses Vorgangs akustische Signale aussenden, die sich nutzen lassen, ... mehr

    Photopower fürs Mikrolabor

    Miniaturisierte Bauteile wie etwa Mikrosensoren oder Chiplabors benötigen häufig ebenfalls miniaturisierte, netzunabhängige Stromquellen. Auf der Suche nach geeigneten autonomen Systemen haben japanische Wissenschaftler jetzt ein vollständig integriertes Mikrofluidik-Bauelement entwickelt. ... mehr

    Batterien aus Schrott

    Abfall sinnvoll verwerten und gleichzeitig ein technisches Problem innovativ lösen – das gelang chinesischen Wissenschaftlern, indem sie verrostete Edelstahlgewebe direkt zu Elektroden mit hervorragenden elektrochemischen Eigenschaften machen, die für Kaliumionen-Akkus ideal sind. Wie sie i ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.