Meine Merkliste
my.chemie.de  
Login  

"Schwache Messung" mit starken Ergebnissen

Neue Methode mit der man Quantenzustände rasch und präzise messen kann

11.01.2017

Copyright: TU Wien

Schematische Darstellung des interferometrischen Aufbau

Die Magnetresonanztomographie (MRT) ist eine medizinische Anwendung, die wohl den meisten ein Begriff ist  – meistens aufgrund eigener schmerzlicher Erfahrungen. Die Patienten absorbieren – und infolge emittieren wieder – elektromagnetische Wellen in alle Raumrichtungen, die dann aufgezeichnet werden. Auf Basis dessen werden daraus später 3D-Bilder oder 2D-Schnitte rekonstruiert. Umgelegt auf die physikalische Grundlagenforschung ersetzt man lediglich Patienten durch ein Quantenobjekt und die elektromagnetischen Wellen durch eine Quantenmessung. Das Resultat ist eine Quantentomographie (quantum state tomography).

Quantenzustände rekonstruieren, ohne Nachbearbeitung

Die Quantentomographie zielt darauf ab, den Quantenzustand eines Objekts, so wie er von seiner Quelle emittiert wird, zu rekonstruieren, noch bevor er sich zu verändern beginnt – sei es durch eine Messung oder durch Wechselwirkungen mit seiner Umwelt. Im Laufe der Jahre wurde diese Technik zu einem unverzichtbaren Werkzeug im Forschungsgebiet der Quantentechnologie, ihre theoretischen Grundlagen wurden bereits in den 1970er Jahren geschaffen. Ihre experimentelle Umsetzung gehört heute zum Tagesgeschäft im Umgang mit einer Vielzahl von Quantensystemen.  Das Funktionsprinzip der Quantentomographie – wie auch ihres medizinischen Gegenstücks der MRT-Untersuchung – ist es eine Serie von Messungen aus verschieden räumlichen Richtungen durchzuführen, um so den Quantenzustand eindeutig erfassen zu können. Nichtsdestotrotz ist hierfür eine erhebliche Nachbearbeitung der Messdaten, das sogenannte "post-processing", notwendig, um die gesammelten Informationen sinnvoll auswerten zu können. Das führt schließlich zum gewünschten Resultat, dem ursprünglichen Quantenzustand des Objekts. Alles in allen ein immenser Rechenaufwand.

Als Folge davon wurde 2011 eine neue, direktere Methode entwickelt, die die Rekonstruktion des Quantenzustands ohne Nachbearbeitung der Messdaten ermöglichte. Jedoch hatte diese neue Methode eine andere Schwachstelle: Sie bediente sich sogenannter "schwacher Messungen", ein Messkonzept das das Quantensystem weitestgehend ungestört lässt und lediglich eine geringe Menge an Information extrahiert. Für gewöhnlich ist eine Messung ein massiver Eingriff in ein Quantensystem, bei dem sämtliche typische Quanteneffekte wie Verschränkung und Interferenz unwiederbringlich zerstört werden. Eine "schwache Messung" vermeidet diesen Umstand, allerdings müssen die Messungen aufgrund des geringen Informationszuwachses oft wiederholt werden – eine nicht unerhebliche Problematik in der praktischen Anwendung. Einem Forschungsteam am Atominstitut der TU Wien unter der Leitung von Stephan Sponar ist es nun gelungen, diese beiden Methoden zu kombinieren und die positiven Aspekte beider Verfahren zu vereinen. "Dabei wurde die Notwendigkeit der "schwachen Messungen" aus dem direkten Messprozess des Quantenzustands entfernt und anstelle dieser, gewöhnliche – also starke Messungen – eingesetzt. Das Resultat ist, dass der Quantenzustand nun genauer, aber auch mit wesentlich geringerem Zeitaufwand, bestimmt werden kann,“ erklärt Sponar.

Neutroneninterferometrie als Messtechnik der Wahl

Im Experiment bedienten sich Sponar und sein Team einer Messtechnik, die als Neutroneninterferometrie bezeichnet wird. Sie basiert auf der Wellennatur des Neutrons, das ein fester Bestandteil des Atomkerns ist und rund zwei Drittel des Universums ausmacht. Befinden sich Neutronen jedoch außerhalb des Atomkerns, etwa durch Kernspaltung in einem Forschungsreaktor, dann verhalten sie sich wie eine Welle. Dieses Phänomen wird auch als Welle-Teilchen-Dualismus bezeichnet und stellt als solches eine Grundlage der Quantenmechanik dar. Im Inneren des Neutroneninterferometers wird der einfallende Neutronenstrahl an einem Strahlteiler (einer dünnen Silizium-Scheibe) in zwei kohärente Teilstrahlen aufgeteilt, welche nach Durchlaufen unterschiedlicher Wege zur Interferenz gebracht werden. Das eigentliche Experiment wurde am Institut Laue-Langevin in Grenoble durchgeführt, wo die Forschungsgruppe des Atominstituts einen permanenten Strahlplatz unterhält.

Die Resultate der Forschung sind nicht auf Neutronen beschränkt: Vielmehr lassen sie sich auf sämtliche Quantensysteme wie Photonen, Ionen in Magnetfallen oder supraleitende Qubits anwenden. Die Resultate könnten großen Einfluss darauf haben, wie in Zukunft Quantenzustände bestimmt werden und stellen eine wertvolle Ressource hinsichtlich neuer Entwicklungen auf dem Sektor der Quanteninformationsverarbeitung dar.   

Fakten, Hintergründe, Dossiers
  • Quantentomographie
  • Quantentechnologie
  • Quantensysteme
  • Quanteneffekte
  • TU Wien
  • Neutroneninterferometrie
  • Neutronen
  • Quantenmechanik
Mehr über TU Wien
  • News

    Auf der Suche nach den besten Materialien für 3D-Druck

    An der TU Wien wird an extrem präzisen 3D-Druck-Technologien geforscht. Eine neue Methode erlaubt es nun, besser und effektiver nach passenden Materialien zu suchen. Wie baut man ein Modell des Stephansdoms in der Größe eines Staubkorns? Mit den modernen 3D-Druck-Techniken der TU Wien ist d ... mehr

    Der Strahl, der unsichtbar macht: Neue Tarnkappen-Technologie entwickelt

    Wie macht man Materialien unsichtbar? Ein Forschungsteam der TU Wien hat mit Unterstützung aus Griechenland und den USA einen neuen Ansatz für Tarnkappen-Technologien entwickelt: Ein vollständig undurchsichtiges Material wird von oben oder unten mit einem ganz bestimmten Wellenmuster bestra ... mehr

    Hohle Atome: Die große Wirkung eines unterschätzten Effekts

    Ein über 20 Jahre altes Rätsel der Atomphysik wurde an der TU Wien gelöst. Das Ergebnis soll nun auch helfen, die Wirksamkeit ionisierender Strahlung in der Krebstherapie besser zu verstehen. Die „hohlen Atome“, die in den Labors der TU Wien hergestellt werden, sind äußerst exotische Objekt ... mehr

  • Videos

    Epoxy Resin

    A flash of ultraviolet light sets off a chain reaction which hardens the whole object. mehr

    Noreia

    Zeitraffervideo, das die Installation der Beschichtungsmaschine Noreia an der TU Wien zeigt. mehr

    Shaping Drops: Control over Stiction and Wetting

    Some surfaces are wetted by water, others are water-repellent. TU Wien (Vienna), KU Leuven and the University of Zürich have discovered a robust surface whose adhesive and wetting properties can be switched using electricity. This remarkable result is featured on the cover of Nature magazin ... mehr

  • Universitäten

    Technische Universität Wien

    Die TU Wien ist mit knapp 30.000 Studierenden und rund 4.800 Mitarbeiter_innen Österreichs größte Forschungs- und Bildungsinstitution im naturwissenschaftlich-technischen Bereich. Unter dem Motto "Technik für Menschen" wird an der TU Wien schon seit über 200 Jahren geforscht, gelehrt und g ... mehr

    Technische Universität Wien

    mehr

  • q&more Artikel

    Das Herz in der Petrischale

    Regenerative Medizin stellt eine der großen Zukunftshoffnungen und Entwicklungsperspektiven in der medizinischen Forschung des 21. Jahrhunderts dar. Revolu­tionäre Resultate konnten bereits durch gentechnische Eingriffe erzielt werden, ­wobei allerdings ethische und regulatorische Aspekte e ... mehr

  • Autoren

    Dr. Kurt Brunner

    Kurt Brunner, geb. 1973, studierte Technische Chemie an der TU Wien, wo er 2003 am Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften promovierte. Während seiner Dissertation arbeitete er im Bereich der Molekularbiologie der Pilze mit Forschungsaufenthalten an de ... mehr

    Prof. Dr. Marko D. Mihovilovic

    Marko D. Mihovilovic, Jg. 1970, studierte von 1988–1993 technische Chemie an der TU Wien und promovierte dort 1996 im Bereich Organische Synthesechemie. Anschließend war er für Postdoc-Aufenthalte als Erwin-Schrödinger-Stipendiat an der University of New Brunswick, Kanada sowie an der Unive ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.