Meine Merkliste
my.chemie.de  
Login  

Erstmalig quantenoptischer Sensor im Weltraum getestet

Zum ersten Mal Bose-Einstein-Kondensat im All erzeugt

25.01.2017

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultra-kalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quanten-optische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft beschleunigt. Dieses Prinzip gilt für Steine, Federn und Atome gleichermaßen. Unter den Bedingungen der Schwerelosigkeit kann besonders lange und damit präzise gemessen werden, ob verschieden schwere Atome tatsächlich „gleich schnell im Schwerefeld der Erde fallen“ oder ob wir unser Bild von dem, was die Welt im Innersten zusammenhält, korrigieren müssen.

Einem nationalen Konsortium, zu dem auch das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) sowie die Humboldt-Universität zu Berlin (HU) gehören, ist nun im Rahmen der MAIUS-Mission ein historischer Schritt auf dem Weg zu einem Test des Äquivalenzprinzips im Mikrokosmos der Quantenobjekte gelungen. Am 23. Januar 2017 wurde erstmalig im Weltraum eine Wolke nano-Kelvin kalter Rubidium-Atome erzeugt. Diese wurde mit Laserlicht und Radiofrequenzen so abgekühlt, dass die einzelnen Atome gleichsam ein einziges Quantenobjekt formen, ein Bose-Einstein-Kondensat.

Gut 20 Jahre nach den bahnbrechenden Arbeiten der Nobelpreisträger Cornell, Ketterle und Wieman im Feld der ultrakalten Atome deutet die vorläufige Auswertung der wissenschaftlichen Daten darauf hin, dass solche Experimente auch unter den rauen Bedingungen im Weltraum durchgeführt werden können – 1995 waren wohnzimmergroße Apparaturen in spezieller Laborumgebung dazu notwendig. Der quantenoptische Sensor von Heute ist nur so groß wie ein Gefrierschrank und bleibt trotz der enormen mechanischen und thermischen Belastungen eines Raketenstarts einsatzfähig. Mit dieser Mission wurde die Grundlage für den zukünftigen Einsatz von Quantensensoren im Weltraum gelegt. Die Forscher erhoffen sich davon Hinweise zur Bewältigung einer der womöglich größten Herausforderungen der modernen Physik: die Vereinigung der Gravitation mit den anderen drei grundlegenden Wechselwirkungen (starke und schwache Kraft, Elektromagnetismus) in einer einheitlichen Theorie. Zugleich sind diese Experimente Innovationstreiber für ein breites Spektrum an Anwendungen, von der GPS-freien Navigation bis hin zur weltraumgestützten Geodäsie, der Vermessung der Erdoberfläche.

Umfassendes Know-how bei Lasermodulen für Weltraumanforderungen

Das FBH hat für diese Mission hybrid mikrointegrierte, weltraumtaugliche Lasermodule entwickelt, die auf Halbleitern basieren. Diese hat die HU zusammen mit anderen optischen und spektroskopischen Modulen weiterer Partner zu einem funktionalen Gesamtlasersystem zusammengeführt und qualifiziert. Die Mission wurde von einem nationalen Konsortium unter Leitung der Leibniz Universität Hannover koordiniert. Sie zeigt nicht nur, dass quantenoptische Experimente mit ultrakalten Atomen auch im Weltraum durchgeführt werden können, sie gibt dem FBH und der HU auch die Möglichkeit, ihre Lasersystemtechnologie unter realen Einsatzbedingungen zu testen und die Ergebnisse zur Vorbereitung weiterer, bereits geplanter Missionen zu nutzen. Für beide Einrichtungen ist dies nicht der erste Einsatz ihrer Lasertechnologie im Weltraum. Bereits im April 2015 und Januar 2016 konnten Technologiebausteine der aktuellen Mission an Bord zweier Höhenforschungsraketen in den Experimenten FOKUS und KALEXUS erfolgreich getestet werden

MAIUS: Materiewelleninterferometrie unter Schwerelosigkeit

Die vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) mit Mitteln des Bundesministeriums für Wirtschaft und Energie geförderte Mission MAIUS testet alle Schlüsseltechnologien eines weltraumgestützten Quantensensors auf einer Höhenforschungsrakete: Vakuumkammer, Lasersystem, Elektronik und Software. Damit ist MAIUS ein historischer Meilenstein für zukünftige Missionen im Weltraum, die das volle Potenzial der Quantentechnologie ausnutzen. Weltweit zum ersten Mal wurde ein Bose-Einstein-Kondensat aus Rubidium-Atomen auf einer Höhenforschungsrakete erzeugt und interferometrisch untersucht. Dieser Materiezustand ermöglicht hochgenaue Messungen von Beschleunigungen und Rotationen. Hierbei werden Pulse aus Laserlicht als Referenz benutzt, um sehr präzise die Position der Atomwolke zu unterschiedlichen Zeitpunkten zu vermessen.

Unter der Leitung der Arbeitsgruppe Optische Metrologie der HU wurde ein kompaktes und stabiles Diodenlasersystem für die Laserkühlung und Atominterferometrie mit ultra-kalten Rubidium-Atomen auf einer Höhenforschungsrakete entwickelt. Das Lasersystem für den Betrieb des Hauptexperimentes auf MAIUS setzt sich aus vier Diodenlasermodulen zusammen, die das FBH als hybrid-integrierte Lasermodule realisiert hat. Die Master-Laser bestehen jeweils aus einem monolithischen Distributed-Feedback (DFB)-Laser, dessen Frequenz auf die eines optischen Übergangs in Rubidium stabilisiert ist. Sie erzeugen spektral reine und hochstabile (~ 1 MHz Linienbreite) optische Strahlung geringer Leistung (einige 10 mW) bei 780 Nanometern Wellenlänge. Drei auf diesen Master-Laser referenzierte, hybrid-integrierte Master-Oscillator-Power-Amplifier sind für die Laserkühlung der Atome und für die Interferometrie zuständig. Bei Ihnen wird die Strahlung eines DFB-Lasers ohne Verlust der spektralen Stabilität mit einem Trapezverstärker mit einer Rippenwellenleiter-Eingangssektion bis zu Leistungen jenseits von 1 Watt nachverstärkt. Um den erfolgreichen Verlauf der Mission zu sichern, wurden zusätzlich zwei Redundanzmodule integriert. Das Laserlicht wird mittels faseroptischer Bauelemente aufbereitet und an die Experimentierkammer weitergeleitet, zum schnellen Schalten des Lichts werden akusto-optische Modulatoren in einem Freistrahlaufbau genutzt.

Zusätzlich wurde für künftige Missionen ein Laser-Technologie-Demonstrator integriert, der zwei vom FBH entwickelte, mikrointegrierte Extended Cavity Diode Laser (ECDL)-Halbleiterlasermodule enthält. Diese Module werden insbesondere für zukünftige Atominterferometrie-Experimente benötigt, die strengere Anforderungen an die spektrale Stabilität der Laser stellen.

Fakten, Hintergründe, Dossiers
  • Rubidium
  • Bose-Einstein-Kondensaten
  • ultrakalte Atome
  • Deutsches Zentrum f…
  • Quantentechnologie
  • Interferometrie
  • Lasersysteme
Mehr über Ferdinand-Braun-Institut
Mehr über Humboldt Universität Berlin
  • News

    Die Sonne anzapfen

    Ein Team von Forschern der Humboldt-Universität zu Berlin und der Technischen Universität Eindhoven in den Niederlanden hat dünne Plastikfilme entwickelt, die sich kontinuierlich im Sonnenlicht bewegen. Derartige Materialien, die die Energie des Sonnenlichtes direkt in Bewegung umwandeln kö ... mehr

    Preisgünstige Druckmuster für die Diagnostik

    Mit einem Standard-Laserausdrucker erstellte Druckmuster könnten als Plattform für kostengünstige organische Elektronik, Mikrofluidik oder Sensorik dienen. Wissenschaftler an der Humboldt-Universität zu Berlin haben jetzt ein Verfahren entwickelt, um gedruckte Mikromuster auf Papier selekti ... mehr

    Dotierung von organischen Halbleitern analysiert

    Organische Halbleiter werden zum Beispiel für Solarzellen oder Leuchtdioden (OLEDs) genutzt. Bislang war jedoch wenig bekannt, wie „Dotier“-Moleküle strukturell in organische Halbleiter integriert werden. Dies hat nun ein Team von der Humboldt-Universität zu Berlin und dem Helmholtz-Zentrum ... mehr

  • Universitäten

    Humboldt-Universität zu Berlin

    Die Humboldt-Universität verkörpert mit ihrer Fächervielfalt in den Geistes-, Sozial- und Kulturwissenschaften, der Mathematik und den Naturwissenschaften, der Humanmedizin sowie den Agrarwissenschaften die universitas litterarum im Zentrum der deutschen Hauptstadt. Vor 200 Jahren als Refo ... mehr

  • q&more Artikel

    Alzheimer: die Suche nach einem Ausweg

    Obwohl die Krankheit Alzheimer bereits vor mehr als 100 Jahren entdeckt wurde, sind die essenziellen Ereignisse, die den Verlauf der Krankheit maßgeblich beeinflussen, weitest­gehend unbekannt. Seit einiger Zeit rückt nun das Tau-Protein, eine schon länger bekannte Komponente von Ablagerung ... mehr

  • Autoren

    Kristina Siebertz

    Kristina Siebertz, Jg. 1990, studierte Chemie an der Universität Zürich und fertigte dort ihre Masterarbeit im Arbeitskreis von Prof. John Robinson an. Für ihre Doktorarbeit zog sie im Februar 2013 nach Berlin, wo sie nun in der Gruppe von Prof. Christian Hackenberger am Leibniz-Institut fü ... mehr

    Oliver Reimann

    Oliver Reimann, Jg. 1984, erhielt seinen Master in Chemie an der Freien Universität Berlin. Seit Oktober 2011 fertigt er seine Promotion im Arbeitskreis von Prof. Christian Hackenberger am Leibniz-Institut für Molekulare Pharmakologie in Berlin Buch und der Freien Universität Berlin an, wob ... mehr

    Prof. Dr. Christian Hackenberger

    Christian P. R. Hackenberger, Jg. 1976, Heinz Maier Leibnitz-Preisträger 2011, studierte Chemie an den Univer­sitäten Freiburg und Madison (USA). Nach seiner Promotion an der RWTH Aachen und einem Postdoc-Aufenthalt am MIT begann er seine eigenen Arbeiten als Liebig-Stipendiat und Emmy-Noet ... mehr

Mehr über Forschungsverbund Berlin
  • News

    Lasergetriebene Elektronenrekollision erinnert sich an die Molekülorbitalstruktur

    Wissenschaftler vom Max-Born-Institut in Berlin haben durch eine Kombination modernster Experimente und numerischer Simulationen eine grundlegende Annahme der Starkfeld-Physik untersucht. Ihre Ergebnisse verfeinern unser Verständnis von starkfeldgetriebenen Prozessen, wie der Erzeugung hohe ... mehr

    Schwingende Atome schalten die elektrische Polarisation von Kristallen

    Ferroelektrische Kristalle besitzen eine makroskopische elektrische Polarisation die durch die Überlagerung sehr vieler Dipole auf atomarer Skala hervorgerufen wird. Entscheidend ist dabei die räumliche Trennung von negativ geladenen Elektronen und positiv geladenen Atomkernen. Man erwartet ... mehr

    Ein Kreisel aus Licht

    Kurze, rotierende Lichtpulse verraten viel über die innere Struktur von Materialien. Ein internationales Team von Physikern um Prof. Misha Ivanov vom Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) hat nun ein neues Verfahren entwickelt, um solche extrem kurzen Lich ... mehr

  • Verbände

    Forschungsverbund Berlin e.V.

    Der Forschungsverbund Berlin e.V. (FVB) ist Träger von insgesamt acht natur-, lebens- und umweltwissenschaftlichen Forschungsinstituten in Berlin, die unter Wahrung ihrer wissenschaftlichen Eigenständigkeit im Rahmen einer einheitlichen Rechtspersönlichkeit gemeinsame Interessen wahrnehmen. ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.