Bismut-Rekord: Unterschiedliche Atomradien erzwingen Entmischung

13.03.2017 - Deutschland

Was bislang als unerreichbar galt, ist der Marburger Chemieprofessorin Dr. Stefanie Dehnen und ihrem Mitarbeiter Dr. Robert J. Wilson jetzt gelungen: Die beiden haben eine Verbindung hergestellt, die 4 Germanium- und 14 Bismut-Atome in einem Molekülverband enthält. Damit handelt es sich um das größte bekannte Käfigmolekül mit direkt aneinander gebundenen Bismut-Atomen.

Wiley-VCH

Käfige an der Kette: Das neuartige Bismut-Anion in zwei verschiedenen Ansichten.

Bismut ist das schwerste Metall, das praktisch nicht radioaktiv ist. „Anders als seine direkten Nachbarn im Periodensystem der Elemente – Blei und Polonium – ist es völlig ungiftig“, sagt Dehnen; „in Form bestimmter Salze findet es sogar Anwendung in der Medizin.“ In elementarer Form kommt es als Mineral vor. Chemiker stellt es jedoch vor Probleme, wie Dehnen darlegt: „Es ist nicht leicht, Bismut-Atome in direkte Metall-Metall-Bindungen zu zwingen. Bis vor kurzem wurde die Bildung von vielatomigen Bismut-Käfigen als derart ungünstig angesehen, dass man davon ausging, mit diesem Element keine großen und komplexen Strukturen realisieren zu können.“

In ihrer aktuellen Publikation beschreiben Dehnen und Wilson, wie die Synthese des neuen Moleküls vonstattengeht: Schmilzt man die chemischen Elemente Kalium, Germanium und Bismut im Verhältnis 2:1:1 zusammen und extrahiert den dabei entstehenden Feststoff mit dem Lösungsmittel Ethylendiamin, so ergibt sich zunächst eine tiefblaue Lösung.

„Mit der Zeit ändert sich die Farbe der Lösung jedoch von Blau über Grün nach Rotbraun, wobei dunkelrote Nadeln kristallisieren“, berichtet Wilson; die Kristallnadeln enthalten die neuartige Bismut-Verbindung – ein Salz, das ein Molekül der Summenformel (Ge4Bi14)4– enthält. „Trotz der langen Reaktionszeit ist die Reaktion reproduzierbar“, betonen Dehnen und Wilson: „Die Produktbildung kann bei Raumtemperatur nach etwa 60 Tagen beobachtet werden, bei 5° C nach zirka 90 Tagen.“

Das rekordverdächtige Molekül besteht aus zwei Bismut-Käfigen, die je sieben Atome besitzen; sie teilen sich eine gemeinsame Kante, die aus vier Germanium-Atomen besteht. „Das Gesamtgebilde ist negativ geladen, es handelt sich somit um das Anion der salzartigen Titelverbindung“, legt Dehnen dar. In der „Cambridge Structural Database“, der wichtigsten Strukturdatenbank für entsprechende Stoffe, findet sich kein Molekül mit der gleichen Gesamtstruktur.

Worauf ist die strikte Trennung der Elementsorten in der Verbindung zurückzuführen? „In verwandten Verbindungen mit anderen Elementkombinationen war bisher immer ein möglichst gleichmäßige Verteilung verschiedener Atomsorten in den Molekülen präferiert worden“, führt Dehnen aus. Das Forschungsteam vermutet, dass die Entmischung auf den extrem unterschiedlich großen Atomradien beruht – ein Phänomen, was von makroskopischen Metalllegierungen bekannt ist; hier wurde dies auf molekularer Skala nachvollzogen.

Wie genau sich das große Bismut-Polyanion bildet, haben die Autoren noch nicht herausgefunden. „Dies wird erst möglich sein, wenn man die Zwischenstufen nachweisen kann, was in diesem Fall aber besonders schwierig ist“, schreiben Dehnen und Wilson.

Originalveröffentlichung

Robert J. Wilson & Stefanie Dehnen; "(Ge4Bi14)4−: Ein Fall von “Element-Entmischung” auf molekularer Skala"; Angewandte Chemie; 11/2017

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Entdecken Sie die neuesten Entwicklungen in der Batterietechnologie!