Meine Merkliste
my.chemie.de  
Login  

Auf dem Weg zur biologischen Variante

Alternativen zu wichtigen großtechnischen chemischen Verfahren möglich?

17.07.2017

Grafik: Oliver Einsle

Das katalytische Zentrum der vanadiumhaltigen Nitrogenase, ein Eisen-Vanadium-Cofaktor mit einem ungewöhnlichen Carbonat-Liganden.

Die Arbeitsgruppe von Prof. Dr. Oliver Einsle am Institut für Biochemie der Universität Freiburg beschäftigt sich seit langer Zeit mit der Funktionsweise der Nitrogenase – und stellt nun die erste dreidimensionale Strukturanalyse der vanadiumhaltigen Variante des Enzyms vor. Daniel Sippel gelang im Rahmen seiner Promotionsarbeit die Produktion und Kristallisation einer Vanadium-Nitrogenase und darauf aufbauend die Aufklärung der Raumstruktur bei atomarer Auflösung durch Röntgenbeugungsexperimente. Langfristiges Ziel der Arbeitsgruppe ist es, die Nitrogenase biotechnologisch nutzbar zu machen und dadurch eine Alternative zu großtechnischen chemischen Verfahren zu eröffnen.

Das Element Stickstoff (N) ist ein wesentlicher Bestandteil aller biologischen Makromoleküle. Seine Verfügbarkeit in der Biosphäre ist dadurch limitiert, dass das weltweite Vorkommen von Stickstoff weitgehend auf das Gas N2 in der Atmosphäre beschränkt ist, dessen Stabilität ihn für die allermeisten Organismen unzugänglich macht. Zur Bereitstellung von bioverfügbarem Stickstoff als Düngemittel in der Landwirtschaft existiert seit 1906 das industrielle Haber-Bosch-Verfahren, das Stickstoff mit Wasserstoff zu Ammoniak verbindet. Seine Bedeutung ist heute so zentral, dass die Nahrungsproduktion für mehr als die Hälfte der Menschheit nur mithilfe von Stickstoffdüngern gewährleistet werden kann. In der Natur bewerkstelligt ein einziges Enzym, die bakterielle Nitrogenase, die gleiche Reaktion, ohne jedoch überschüssige Stickstoffverbindungen in die Umwelt abzugeben – Stichwort: Nitrate im Grundwasser. Allerdings ist die Funktion dieses komplexen, metallhaltigen Enzymsystems bislang nur unvollständig geklärt.

Einsles Arbeitsgruppe gelang schon zuvor ein wichtiger Schritt hin zum Verständnis der Nitrogenase: Die Forscher konnten die Aktivität des Enzyms durch das giftige Gas Kohlenmonoxid (CO) hemmen und zeigen, wie der Hemmstoff am Eisen-Molybdän-Cofaktor (FeMoco) bindet. Dieser ist das Zentrum der Nitrogenase so benannt nach den in ihm enthaltenen Elementen. FeMoco kann die Reaktion von Stickstoff und Wasserstoff katalysieren – die natürliche Version des Haber-Bosch-Verfahrens. Gleichzeitig war bekannt, dass eine Variante der Nitrogenase, die anstelle von Molybdän in ihrem aktiven Zentrum Vanadium benutzt und daher als FeVco bezeichnet wird, den Hemmstoff CO ebenfalls umsetzen kann. Produkt dieser Reaktion sind reduzierte Kohlenstoffverbindungen in Form kurzkettiger Kohlenwasserstoffe. Damit ist diese Reaktion die enzymatische Variante eines zweiten wichtigen chemischen Verfahrens, der Fischer-Tropsch-Synthese von Kohlenwasserstoffen, mit der großtechnisch Treibstoffe zum Beispiel aus Industrieabgasen hergestellt werden können.

Die Vanadium-Nitrogenase aus einem freilebenden Bodenbakterium vermag also unter dessen natürlichen Umgebungsbedingungen die gleiche Syntheseleistung zu erbringen, die in den industriellen Verfahren nur unter extremem Druck und bei hohen Temperaturen möglich ist. Die Haber-Bosch- und Fischer-Tropsch-Verfahren werden jährlich weltweit zur Umsetzung hunderter Millionen Tonnen der jeweiligen Gase – N2 und CO – genutzt, sodass an der Möglichkeit einer nachhaltigen, biologischen Alternative ein erhebliches Forschungsinteresse besteht.

Bei den Forschungsarbeiten zeigte sich, dass die Architektur des Enzyms zwar in großen Teilen der des molybdänhaltigen „Originals“ ähnelte, sich aber an einem wichtigen Punkt unterschied: dem atomaren Aufbau des katalytischen Cofaktors. Sippel und Einsle fanden, dass in FeVco tatsächlich ein Vanadiumion das Molybdänion ersetzt, aber zusätzlich ein Schwefelion des Zentrums durch ein – chemisch davon sehr verschiedenes – Carbonat-Anion ersetzt wird. Dieser nur auf den ersten Blick kleine Unterschied hat weitreichende Auswirkungen auf die geometrische und elektronische Struktur des Cofaktors.

Fakten, Hintergründe, Dossiers
  • Uni Freiburg
  • Nitrogenase
  • Enzyme
  • Haber-Bosch Verfahren
  • Molybdän
  • Fischer-Tropsch-Verfahren
Mehr über Uni Freiburg
  • News

    Berührungslose Ladesysteme

    Das Start-up Blue Inductive entwickelt berührungslose Ladesysteme für Elektroautos und mobile Roboter – und hat beim diesjährigen Businessplanwettbewerb „CyberOne Hightech Award Baden-Württemberg“ im Branchenschwerpunkt Industrielle Technologien den 1. Platz belegt. Die Auszeichnung ist mit ... mehr

    Ionen im Rampenlicht

    Die Ergebnisse einer Forschungsgruppe des Physikalischen Instituts der Universität Freiburg bekommen in der Fachzeitschrift „Nature Photonics“ einen besonderen Platz: Ein Begleitartikel „News & Views“ in der Printversion des wissenschaftlichen Magazins hebt die Arbeit des Teams um Alexander ... mehr

    Hinweise auf Zerfall des Higgs-Teilchens in Quarks

    Die Freiburger Arbeitsgruppe von Prof. Dr. Karl Jakobs und Dr. Christian Weiser hat als Teil der ATLAS-Kollaboration dazu beigetragen, starke Hinweise dafür zu finden, dass das Higgs-Teilchen unter anderem in Quarks zerfällt. Die Forscher haben Datensätze analysiert, die in den Jahren 2015 ... mehr

  • Firmen

    Albert-Ludwigs-Universität Freiburg

    mehr

  • Universitäten

    Albert-Ludwigs-Universität Freiburg

    Die Albert-Ludwigs-Universität liegt nicht nur im Herzen der Stadt Freiburg - die Studierenden, Professor/innen und Mitarbeiter/innen sind auch in den Alltag der Bürgerinnen und Bürger der Schwarzwaldhauptstadt integriert. Darin liegt auch einer der Reize, die das Studium in Freiburg so bel ... mehr

  • q&more Artikel

    Modulare Biofabriken auf Zellebene

    Der „gebürtige Bioorganiker“ hatte sich bei seiner Vorliebe für komplexe Molekülarchitekturen nie die klassische Einteilung von synthetischen Polymeren und biologischen Makromolekülen zu eigen gemacht. Moleküle sind nun mal aus Atomen zusammengesetzt, die einen wie die anderen, warum da ein ... mehr

    Lesezeichen

    Aus einer pluripotenten Stammzelle kann sowohl eine Muskel- als auch eine Leberzelle entstehen, die trotz ihres unterschiedlichen Erscheinungsbildes genetisch identisch sind. Aus ein und demselben ­Genotyp können also verschiedene Phänotypen entstehen – die Epigenetik macht es möglich! Sie ... mehr

  • Autoren

    Dr. Stefan Schiller

    Stefan M. Schiller, Jg. 1971, studierte Chemie mit Schwerpunkt Makromolekulare und Biochemie in Gießen, Mainz und an der University of Massachusetts. Er promovierte bis 2003 am Max-Planck-Institut für Polymerforschung in Mainz über biomimetische Membransysteme, es folgten Forschungsaufentha ... mehr

    Julia M. Wagner

    Julia M. Wagner studierte Pharmazie in Freiburg (Approbation 2008). Seit 2008 ist sie Doktorandin und wissenschaftliche Mitarbeiterin im Arbeitskreis von Professor Dr. M. Jung. In ihrer Forschung beschäftigt sie sich mit der zellulären Wirkung von Histon-Desacetylase-Inhibitoren. mehr

    Prof. Dr. Manfred Jung

    Manfred Jung hat an der Universität Marburg Pharmazie studiert (Approbation 1990) und wurde dort in pharmazeutischer Chemie bei W. Hanefeld promoviert. Nach einem Postdoktorat an der Universität Ottawa, Kanada begann er 1994 am Institut für Pharmazeutische Chemie der Universität Münster mit ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.