Ionen im Rampenlicht

03.11.2017 - Deutschland

Die Ergebnisse einer Forschungsgruppe des Physikalischen Instituts der Universität Freiburg bekommen in der Fachzeitschrift „Nature Photonics“ einen besonderen Platz: Ein Begleitartikel „News & Views“ in der Printversion des wissenschaftlichen Magazins hebt die Arbeit des Teams um Alexander Lambrecht, Julian Schmidt, Dr. Leon Karpa und Prof. Dr. Tobias Schätz hervor. Die Arbeitsgruppe beschreibt in ihrem Artikel „Long lifetimes and effective isolation of ions in optical and electrostatic traps“ ihre Methode, mit der ein bisher unvermeidbarer Antrieb von gefangenen geladenen Ionen verhindert wird.

Julian Schmidt

Um am Anfang eines Experiments die Ionen auf ein Tausendstel Kelvin zu kühlen, werden Laser verschiedener Wellenlängen verwendet.

In dem Experiment ging es zunächst darum, einzelne Barium-Ionen in einer Paulfalle festzuhalten. Eine Paulfalle kann geladene Teilchen mittels elektrischer Wechselfelder fangen und tagelang speichern. Allerdings wird das Ion dabei ständig auf mikroskopisch kleinem Raum herumgewirbelt und damit stetig zusätzliche Bewegung erzwungen. Dieser oft unerwünschte Nebeneffekt führt zum Beispiel in aktuellen Experimenten mit ultrakalten Atomen dazu, dass die Ionen das eigentlich viel kältere Bad aus neutralen Atomen wie ein Tauchsieder heizen, anstatt gekühlt zu werden. Die Temperatur steigt dabei auf das 10.000-fache an. Obwohl diese immer noch lediglich ein Tausendstel Grad Celsius über dem absoluten Nullpunkt liegt, bedeutet dies für die sensiblen Quanteneffekte bereits den Hitzetod.

Hier kommt nun die Methode ins Spiel, die die Arbeitsgruppe seit 2010 für ihre Zwecke weiterentwickelt: das optische Fangen von geladenen Atomen. Dazu wird ein sehr heller Laser genutzt, der das Ion in seinen Strahl festhält, ohne zusätzliche Bewegung zu erzwingen. Vor einigen Jahren war das optische Fangen von Ionen nur für wenige Millisekunden möglich. Durch die Arbeit der Freiburger Physiker gelingt es nun, geladene Atome für ähnlich lange Zeiten wie neutrale Atome in vergleichbaren optischen Fallen zu fangen – mehrere Sekunden Lebensdauer übersteigen die benötigte Zeitdauer für Experimente um ein Vielfaches. Zusätzlich zeigen die Forscher, dass die die Ionen auch von der restlichen Außenwelt ausreichend isolieren können. Das Team erhofft sich, auf diese Art und Weise Zugang zu 10.000-fach niedrigeren Temperaturen und ultrakalten chemischen Prozessen zu erhalten, in denen Quanteneffekte die Wechselwirkung der Teilchen dominieren sollten.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Entdecken Sie die neuesten Entwicklungen in der Batterietechnologie!