Meine Merkliste
my.chemie.de  
Login  

Engineered and Laser‐Processed Chitosan Biopolymers for Sustainable and Biodegradable Triboelectric Power Generation

Abstract

Recent advances achieved in triboelectric nanogenerators (TENG) focus on boosting power generation and conversion efficiency. Nevertheless, obstacles concerning economical and biocompatible utilization of TENGs continue to prevail. Being an abundant natural biopolymer from marine crustacean shells, chitosan enables exciting opportunities for low‐cost, biodegradable TENG applications in related fields. Here, the development of biodegradable and flexible TENGs based on chitosan is presented for the first time. The physical and chemical properties of the chitosan nanocomposites are systematically studied and engineered for optimized triboelectric power generation, transforming the otherwise wasted natural materials into functional energy devices. The feasibility of laser processing of constituent materials is further explored for the first time for engineering the TENG performance. The laser treatment of biopolymer films offers a potentially promising scheme for surface engineering in polymer‐based TENGs. The chitosan‐based TENGs present efficient energy conversion performance and tunable biodegradation rate. Such a new class of TENGs derived from natural biomaterials may pave the way toward the economically viable and ecologically friendly production of flexible TENGs for self‐powered nanosystems in biomedical and environmental applications.

Chitosan as an abundant natural biopolymer, is enigneered by mixing with other natural components and surface laser treatment for optimized triboelectric nanogenerator (TENG) performance. The chitosan‐based TENGs enable exciting opportunities for low‐cost, biodegradable TENG applications in related fields, transforming the otherwise wasted natural materials into functional energy devices.

Autoren:   Ruoxing Wang, Shengjie Gao, Zhen Yang, Yule Li, Weinong Chen, Benxin Wu, Wenzhuo Wu
Journal:   Advanced Materials
Jahrgang:   2018
Seiten:   n/a
DOI:   10.1002/adma.201706267
Erscheinungsdatum:   19.01.2018
Mehr über Wiley
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.