Meine Merkliste
my.chemie.de  
Login  

Industrielle Ausgangsstoffe biologisch produzieren

Neues biokatalytisches Material für die „grüne“ Produktion werthaltiger Chemikalien entwickelt

06.12.2018

Theo Peschke, KIT

Biokatalysator: Zwei verschiedene Eiweißstoffe fügen sich, einem Zweikomponentenkleber vergleichbar, von selbst zu einem Hydrogel zusammen.

Die Industrie verbraucht große Mengen Erdöl, um daraus Ausgangsstoffe für Medikamente, Kosmetik, Kunststoffe oder Lebensmittel herzustellen. Diese Prozesse kosten jedoch viel Energie und erzeugen Abfall. Nachhaltiger sind biologische Verfahren mit Enzymen. Die Eiweißmoleküle können unterschiedlichste chemische Reaktionen katalysieren, ohne Hilfsstoffe oder Lösungsmittel zu verbrauchen. Jedoch sind sie teuer und daher bislang ökonomisch unattraktiv. Forscher des Karlsruher Instituts für Technologie (KIT) haben nun ein neues Biomaterial entwickelt, das den Einsatz der Enzyme stark vereinfacht.

Katalysatoren sorgen dafür, dass Ausgangsstoffe schnell und energiesparend miteinander reagieren und dabei das gewünschte Endprodukt entsteht. In der chemischen Industrie sind sie daher von enormer Bedeutung: In rund 90 Prozent aller chemischen Prozesse werden Katalysatoren eingesetzt. Das von den Wissenschaftlern des KIT entwickelte Biomaterial soll hier eine umweltfreundliche und energiesparende Alternative bieten. „Langfristig erhoffen wir uns, dass solche biokatalytischen Materialien in automatisierten Verfahren eingesetzt werden, um ohne aufwendige Synthese- und Reinigungsschritte und mit möglichst wenig Abfallstoffen wertvolle Ausgangsverbindungen zu produzieren“, so Professor Christof Niemeyer vom Institut für Biologische Grenzflächen.

Um dies zu erreichen, haben die Wissenschaftler natürliche Enzyme so verändert, dass sie sich von selbst zu einem stabilen Biokatalysator zusammenfügen. Ähnlich wie ein Zweikomponentenkleber bilden die Enzyme, wenn man sie zusammengibt, ein gelartiges Material. Es wird auf Kunststoffchips mit rillenförmigen Vertiefungen aufgebracht. Beim Trocknen wird es konzentriert, wobei das Hydrogel entsteht. Der Chip wird dann mit einer Kunststofffolie abgedeckt. Durch die Rillen können nun Ausgangsstoffe gepumpt werden, die von den Biokatalysatoren zu den gewünschten Endprodukten umgesetzt werden. Das Biokatalysatorgel selbst bleibt zurück. Für die Reaktion werden keine Lösungsmittel benötigt, auch hohe Temperaturen oder Drücke sind nicht erforderlich, was den Prozess sehr umweltfreundlich und nachhaltig macht.

Da auf kleinstem Raum sehr viel Reaktionsfläche vorhanden ist, sind die Umsatzraten in solchen miniaturisierten Flussreaktoren, also stark verkleinerten Reaktionsgefäßen, hoch. Ihr Einsatz in biokatalytischen Prozessen steckt jedoch noch in den Kinderschuhen, da sich Enzyme bisher nur mithilfe von Stützmaterialien im Reaktor fixieren ließen. Diese verbrauchen wertvollen Reaktorraum, der dann nicht mehr für den Biokatalysator zur Verfügung steht. Das neue Material haftet dagegen am Träger, sodass der Reaktor maximal mit aktivem Biokatalysator befüllt werden kann. Darüber hinaus lässt es sich vollständig recyceln, ist biologisch abbaubar, sehr stabil und erzielt außerordentlich hohe Ausbeuten bei Reaktionen, für die teure Hilfsstoffe benötigt werden.

Biokatalytische Materialien haben außerdem gegenüber chemischen einen erheblichen Vorteil, wenn in einem Prozess sogenannte Enantiomere entstehen können – also Verbindungen, die sich wie Bild und Spiegelbild gleichen. In der Regel wird davon nur eine Verbindung benötigt, die zweite kann sogar unerwünschte Wirkungen haben. Mithilfe von Biokatalysatoren lässt sich gezielt eine der beiden Varianten herstellen, während bei chemischen Verfahren häufig teure Zusatzstoffe benötigt werden oder die unerwünschte Verbindung aufwendig abgetrennt werden muss.

Fakten, Hintergründe, Dossiers
  • Biokatalysatoren
  • Biokatalyse
  • Biomaterialien
  • Enzyme
  • Hydrogele
Mehr über KIT
  • News

    Neuer Innovationspreis für dezentrale chemische Reaktortechnologie im Containerformat

    Kraftstoffe mithilfe von erneuerbaren Energiequellen preiswert und klimafreundlich herstellen – das ist die Mission des Start-ups INERATEC, einer Ausgründung aus dem Karlsruher Institut für Technologie (KIT). Eigentlich sind bei der Produktion von synthetischen Kraftstoffen wie Benzin riesi ... mehr

    Hoher Druck ordnet Elektronen

    Hochtemperatur-Supraleiter können elektrische Energie widerstandsfrei transportieren. Allerdings verhindert eine starre Ladungsordnung die Supraleitung. Forscherinnen und Forscher am Karlsruher Institut für Technologie (KIT) haben die konkurrierenden Zustände mit hochauflösender inelastisch ... mehr

    Innovationspreis für klimafreundliche Methanspaltung

    Energie aus Erdgas ohne klimaschädliche CO2-Emissionen: Das verspricht eine neue Technologie, die Wissenschaftler des Karlsruher Instituts für Technologie (KIT) und des Institute for Advanced Sustainability Studies (IASS) in Potsdam in einem gemeinsamen Forschungsprojekt entwickelt haben. D ... mehr

  • Videos

    Bioliq: Energiegewinnung aus Reststoffen – komplette Prozesskette läuft

    Die bioliq®-Pilotanlage am Karlsruher Institut für Technologie (KIT) läuft erfolgreich über die gesamte Prozesskette. Alle Stufen des Verfahrens sind nun miteinander verbunden: Schnellpyrolyse, Hochdruck-Flugstromvergasung, Heißgasreinigung und Synthese. Durch bioliq® wird Restbiomasse in u ... mehr

    Sicherheit von Lithium-Ionen-Batterien erhöhen

    Lithium-Batterien sollten bei Transport, Montage und im Betrieb wirklich sicher sein. KIT-Wissenschaftler erklären, welche Faktoren dazu beitragen, die Sicherheit von Lithium-Ionen-Batterien zu erhöhen. mehr

    Kleben wie ein Gecko: selbstreinigend und haftsicher

    Geckos haben Klebestreifen eines voraus: Selbst nach wiederholtem Kontakt mit Schmutz und Staub kleben ihre Füße noch auf glatten Flächen einwandfrei. Forscher des KIT und der Carnegie Mellon Universität in Pittsburgh haben nun den ersten Klebstreifen entwickelt, der nicht nur genauso hafts ... mehr

  • Forschungsinstitute

    Institut für Funktionelle Grenzflächen (IFG) am Karlsruher Institut für Technologie (KIT)

    Forschungsgegenstand des Instituts für Funktionelle Grenzflächen (IFG) ist das Studium molekularer Interaktionen an fest/gas und fest/flüssig Grenzflächen. Aus der Untersuchung von Grundlagenprozessen auf der Nano-Ebene gewonnene Erkenntnisse werden konsequent auf die Makro-Ebene technische ... mehr

    Karlsruher Institut für Technologie (KIT)

    Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts und staatliche Einrichtung des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das ... mehr

  • q&more Artikel

    Biochemie in der Mikrowelle

    Die Entwicklung neuer Pharmazeutika beruht auf dem zunehmenden Verständnis intrazellulärer Vorgänge. Insbesondere durch die Erforschung von Ligand-Rezeptor-Wechselwirkungen können Wirkstoffe ­besser angepasst werden. Um Medikamente an ihren Wirkungsort ­zu bringen, werden sog. „Carrier“-Mol ... mehr

  • Autoren

    Prof. Dr. Stefan Bräse

    Stefan Bräse, geb. 1967, studierte Chemie in Göttingen und promovierte dort 1995 an der Universität. Nach Postdoktoraten in Uppsala/S und La Jolla/USA begann er an der RWTH ­Aachen mit seinen eigenständigen Arbeiten (Habilitation in organischer Chemie 2001) und wechselte 2001 als Professor ... mehr

    Dr. Sidonie Vollrath

    Sidonie Vollrath, geb. 1984, studierte Chemie in Karlsruhe und promovierte 2012 am KIT in der Gruppe von Prof. S. Bräse. ­Während des Studiums und der Promotion ­absolvierte sie Forschungsaufenthalte an der University of Wisconsin in Madison bei Prof. H. Blackwell sowie an der New York Univ ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.