Meine Merkliste
my.chemie.de  
Login  

Selbstverstärkender chemischer Mechanismus erklärt extremen Wintersmog

23.12.2016

Hang Su, MPI for Chemistry

In Peking ist der gesundheitsschädliche Wintersmog oft besonders extrem und raubt die Sicht auf die Stadt und die Umgebung. Die hohen Feinstaubwerte entstehen durch einen bisher unbeachteten chemischen Mechanismus in Aerosolpartikeln.

Professor Min Shao, College of Environmental Sciences and Engineer, Peking University

Blick aus dem Fenster: Einmal mit und ohne Luftverschmutzung.

Stickstoff- und Schwefeloxide reagieren an Aerosolpartikeln miteinander und können durch einen bisher unerkannten Mechanismus schnell zu hohen Feinstaubkonzentrationen führen.

In kalten Wintermonaten sind Peking und große Teile Chinas regelmäßig von anhaltendem Smog eingehüllt. Dieser Smog besteht aus feinen Aerosolpartikeln und bedroht die Gesundheit von etwa 400 Millionen Menschen. Im Jahr 2013 wurden in Peking Rekordwerte von Feinstaub mit hohem Sulfatanteil gemessen. Dessen Quelle war jedoch lange ein Rätsel, da die Sonneneinstrahlung, die üblicherweise für die photochemische Produktion von Sulfat verantwortlich ist, aufgrund der Dunstglocke schwach ist.

Ein internationales Team unter Leitung von Wissenschaftlern des Max-Planck-Instituts für Chemie in Mainz konnte nun den Ursprung der hohen Sulfatanteile im Aerosolsmog aufdecken: Eine chemische Reaktion zwischen den Luftschadstoffen Stickstoffdioxid (NO₂) und Schwefeldioxid (SO₂) in wässrigen Aerosolpartikeln ermöglicht die schnelle Bildung und Ansammlung von Sulfat. Dieser Reaktionsweg ist unabhängig von Sonneneinstrahlung und photochemischen Reaktionen.

In der aktuellen Ausgabe der Wissenschaftszeitschrift „Science Advances“ zeigen die Forscher, dass das Wasser der Aerosole als Reaktionsmedium wirkt, in dem alkalische Komponenten der Aerosole Schwefeldioxid (SO₂) aus der Luft aufnehmen. SO₂ wird dann durch NO₂ oxidiert und bildet Sulfat (SO₄²⁻). Dieser Mechanismus verstärkt sich selbst, da mit der Sulfatbildung die Partikelmasse zunimmt, und die Aerosolpartikel dadurch mehr Wasser aufnehmen können. Dieses wiederum führt zu einer schnelleren Sulfatproduktion und insgesamt zu einer stärkeren Smogbildung, als man bisher erklären konnte.

Yafang Cheng, Gruppenleiterin am MPI für Chemie und ihre Kollegen führten eine genaue Analyse von Aerosolmessdaten aus dem Januar 2013 durch, als Peking besonders stark von Smog betroffen war. Das Ergebnis verblüffte die Wissenschaftler, denn die Sulfatproduktionsrate war in Zeiten des stärksten Smogs sechs Mal größer als in Zeiten niedrigen bis mäßigen Smogs. „Wir haben festgestellt, dass die Sulfatproduktion mit der Konzentration an feinen Aerosolpartikeln stark ansteigt“, erklärt die Erstautorin der Studie.

„Die von uns beobachtete, stark erhöhte Sulfatproduktion bei gleichzeitig geringer Sonneneinstrahlung wies auf die Existenz des bisher nicht beachteten Reaktionswegs im Aerosolwasser hin", erklärt Hang Su, ebenfalls Gruppenleiter am MPI für Chemie und kokorrespondierender Autor der Studie. „Die Reaktion von Stickstoff- und Schwefeloxiden im Aerosolwasser erklärt die fehlende Sulfatquelle im Wintersmog. Wasser ist eine Schlüsselkomponente atmosphärischer Aerosole, die eine breite Palette von Flüssigphasenreaktionen ermöglicht", fasst Hang Su zusammen.

Umfassende und strenge Emissionskontrollen von Stickstoff- und Schwefeloxiden seien erforderlich, um die Bildung von Wintersmog in Peking und Umgebung zu vermeiden, schlussfolgern Yafang Cheng und Hang Su. Die Wissenschaftler erwarten, dass ihre Erkenntnisse zur Entwicklung und Umsetzung von Strategien zur Luftreinhaltung und zur Reduktion der negativen Gesundheitseffekte von Smog in China beitragen werden.

Die globale Relevanz und Perspektive der bahnbrechenden Studie erläutert Ulrich Pöschl, Direktor am MPI für Chemie: „Die Ergebnisse zeigen, wie eng die Wechselwirkungen von Gasen, Flüssigkeiten und festen Substanzen in unserer Umwelt miteinander gekoppelt sind. Sie verdeutlichen auch, wie wichtig diese Prozesse für unser Verständnis von Klimawandel und Gesundheit im Anthropozän sind.“ Der Begriff Anthropozän bezeichnet das gegenwärtige Erdzeitalter, in dem die Umwelt global von menschlichen Einflüssen geprägt ist.

Fakten, Hintergründe, Dossiers
  • Schwefeloxide
  • Stickstoffoxide
Mehr über MPI für Chemie
  • News

    Erstmals Langzeit-Messung atmosphärischer Radikale

    Hydroxylradikale (OH) tragen zur Reinigung der Atmosphäre bei. Sie reagieren mit toxischen Gasen wie Kohlenmonoxid (CO) und verlangsamen die globale Klimaerwärmung, indem sie Treibhausgase wie Methan (CH4) durch Oxidation aus der Luft entfernen. In einigen Teilen der Atmosphäre, wie zum Bei ... mehr

    Umverteilung giftiger Chemikalien aus der Vergangenheit

    Persistente organische Schadstoffe sind giftige Chemikalien, die in der Natur nicht oder nur sehr langsam abgebaut werden. Sie sind umweltschädlich und können sich negativ auf die menschliche Gesundheit auswirken, weswegen viele dieser Schadstoffe heutzutage verboten sind. Dennoch findet ma ... mehr

    Überraschung aus dem Urwaldboden

    Der Amazonas-Regenwald ist der größte Wald der Erde. Seine Bäume geben eine Vielzahl flüchtiger Substanzen ab, welche die chemische Zusammensetzung der Luft beeinflussen. Dazu gehören auch die sogenannten Sesquiterpene – sehr reaktive chemische Verbindungen, die besonders schnell Ozon abbau ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für Chemie

    Vorläufer unseres Instituts ist das Kaiser-Wilhelm-Institut für Chemie, das 1912 in Berlin-Dahlem eröffnet wurde. Es wurde 1949 in die Max-Planck-Gesellschaft übernommen und als Max-Planck-Institut für Chemie in Mainz neu aufgebaut. Zu Ehren Otto-Hahns trägt das Institut den Zweitnamen Otto ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Erstmals Langzeit-Messung atmosphärischer Radikale

    Hydroxylradikale (OH) tragen zur Reinigung der Atmosphäre bei. Sie reagieren mit toxischen Gasen wie Kohlenmonoxid (CO) und verlangsamen die globale Klimaerwärmung, indem sie Treibhausgase wie Methan (CH4) durch Oxidation aus der Luft entfernen. In einigen Teilen der Atmosphäre, wie zum Bei ... mehr

    Hocheffizient und kostengünstig: Neuartige Polymer-Linsen für Röntgenmikroskope

    Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme in Stuttgart haben ein neuartiges und kostengünstiges Verfahren zur Herstellung von Röntgenlinsen mit Nanometer kleinen Merkmalen und exzellenten Fokussiermöglichkeiten erfunden. Durch den Einsatz dieser fortschrittlichen 3D- ... mehr

    Neue Impulse für Biokraftstoffzellen

    In der Chemie ist eine Reaktion spontan, wenn keine externe Energie diese auslöst. Wie viel Energie in einer Reaktion freigesetzt wird, hängt von den Gesetzen der Thermodynamik ab. Bei den spontanen Reaktionen im menschlichen Körper reicht diese oft nicht aus, um medizinische Implantate zu ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.