Meine Merkliste
my.chemie.de  
Login  

Wie fest zu flüssig wird

Materialwissenschaftler erklären, was beim Schmelzen passiert

05.03.2018

Lothar Wondraczek

Ein Wissenschaftlerteam um Prof. Dr. Lothar Wondraczek von der Uni Jena hat den Vorgang des Schmelzens von Feststoffen detailliert aufgeklärt.

Aus Eis wird Wasser, Butter zerläuft zu flüssigem Fett, Minerale verwandeln sich in transparentes Glas – all diese Prozesse funktionieren nur, weil sich der Aggregatzustand eines Ausgangsmaterials durch Erhitzen von fest in flüssig verändert. Gemeinhin nennt man diesen Übergang Schmelzen. Doch obwohl er allgegenwärtig ist, ist überraschend wenig darüber bekannt, wie der Vorgang auf der Ebene von Molekülen und Atomen eigentlich genau abläuft. Materialwissenschaftler der Friedrich-Schiller-Universität Jena haben nun gemeinsam mit Fachkollegen aus Großbritannien, Frankreich, den USA und Deutschland detailliert beobachten können, was beim Schmelzen genau passiert.

„In der Regel schmilzt ein Material von seiner Oberfläche aus – Eis wird so beispielsweise rutschig“, sagt Prof. Dr. Lothar Wondraczek, Lehrstuhlinhaber für Glaschemie an der Universität Jena. „Doch unter bestimmten Bedingungen schmilzt ein Körper auch homogen, also im Ganzen.“ In den meisten bisher bekannten Fällen ist die Viskosität – also die Zähigkeit – der entstandenen Flüssigkeit am Schmelzpunkt aber sehr niedrig, so dass der eigentliche Schmelzprozess äußerst schnell abläuft und sich nur schwer beobachten lässt. Dem Wissenschaftlerteam ist es nun gelungen, sich den Schmelzvorgang quasi in Zeitlupe anzuschauen. Dabei deckten sie auf, dass beim Übergang von fest nach flüssig grundsätzlich zwei Schritte aufeinanderfolgen: „Erhöht man die Temperatur, so erreicht das System zunächst einen energetischen Zustand, der zufällig auftauchende gestörte Bereiche zur Folge hat, allerdings ohne dass die Teilchen, aus denen das Kristallgitter besteht, bereits größere Bewegungen vornehmen. Nur wenn diese Teilchen im zweiten Schritt auch die Freiheit erlangen, sich verstärkt und stetig über größere Strecken zu bewegen, verflüssigen sich die gestörten Bereiche“, erklärt Wondraczek. „In gewisser Weise muss die Flüssigkeit also erst tatsächlich flüssige Eigenschaften erlangen, bevor der Schmelzvorgang abgeschlossen ist. Wenn man beispielsweise Eis sehr schnell auf einige Grad Celsius erwärmt, so ist die Beweglichkeit der Teilchen im flüssigen Zustand in aller Regel allerdings so hoch, dass der zweite Teil der Reaktion aufgrund der hohen Geschwindigkeiten kaum separat beobachtbar ist.“

Schmelzen in Zeitlupe

Für die Erkenntnisse der Jenaer Forscher, die der Europäische Forschungsrat im Rahmen des Projektes „UTOPES“ unterstützt hat, sind Experimente an sogenannten Zeolithen verantwortlich, Materialien also mit sehr poröser Struktur. Die Wissenschaftler konnten zeigen, dass diese in flüssiger Form eine weitaus höhere Viskosität als Wasser oder sogar als zäher Honig besitzen. Zeolithe kommen in der Natur vor, werden aber auch in großer Menge künstlich produziert und finden vielfältige Anwendungsmöglichkeiten, etwa in Waschmitteln oder Filtern. In unterschiedlichen Experimenten erhitzten die Wissenschaftler die Zeolithe und beobachteten gleichzeitig, wie sich währenddessen die Materialeigenschaften verändern. „Der Schmelzprozess läuft hierbei wesentlich langsamer ab, was uns ein Zeitfenster im Minutenbereich für unsere Beobachtungen ermöglichte“, beschreibt der Jenaer Materialwissenschaftler einen Grundgedanken der Arbeiten. Mit den neuen Erkenntnissen besteht nun die Möglichkeit, das Material auch während des Schmelzprozesses in seiner Struktur festzuhalten und es so noch weiter modifizieren zu können.

Doch viel bedeutender ist für die Forschergruppe, dass hier eine wichtige Lücke in der Grundlagenforschung geschlossen werden könnte – und das nicht nur in ihrem Bereich der Materialwissenschaften. „Viele Wissenschaftler aus ganz unterschiedlichen Disziplinen, etwa aus den Geowissenschaften, der Chemie und der Physik, haben sich dem Thema von ganz unterschiedlichen Seiten genähert“, sagt der Jenaer Materialwissenschaftler. „Wir glauben, dass wir nun auf dem Weg zu einer allgemeingültigen und übergreifenden Klärung dessen, was beim Schmelzen genau passiert, einen entscheidenden Schritt machen konnten.“

Originalveröffentlichung:

L. Wondraczek et al.; "Kinetics of decelerated melting"; Advanced Science; 5, 1700850, 2018,

Fakten, Hintergründe, Dossiers
Mehr über Uni Jena
  • News

    Licht zur Herstellung energiereicher Chemikalien nutzen

    Eine weitere Stärkung ihrer chemischen Forschungsbereiche erfahren jetzt die Universitäten in Ulm und Jena. Die Deutsche Forschungsgemeinschaft (DFG) bekanntgegeben, dass sie den gemeinsamen Sonderforschungsbe­reich/Trans­regio (SFB/TRR) 234 "CataLight" in den nächsten vier Jahren fördert. ... mehr

    Oberfläche winziger, gekrümmter Kohlenstofffasern durch Laserstrukturierung gestalten

    Die Oberfläche von Materialien kann einen enormen Einfluss auf deren Funktion haben. Verändert man die äußere Beschaffenheit, so erweitert man auch die Bandbreite der Verwendungsmöglichkeiten. Deshalb erforschen Materialwissenschaftler der Friedrich-Schiller-Universität Jena, wie sie die Ob ... mehr

    Eine Billiardstel-Sekunde in Zeitlupe

    Viele chemische Prozesse sind so schnell, dass nur ihr ungefährer Ablauf bekannt ist. Zur Aufklärung dieser Prozesse hat nun ein Team der Technischen Universität München (TUM) eine Methode mit einer Auflösung von Trillionstel-Sekunden entwickelt. Die neue Technik soll helfen, Prozesse wie d ... mehr

  • Universitäten

    Friedrich-Schiller-Universität Jena

    In Jena ist nichts weit. Man kann im Grünen wohnen und in wenigen Minuten in der City sein – und umgekehrt. Die Grenzen sind fließend – urban wie intellektuell. Denn kurze Wege gibt es in Jena auch im übertragenen Sinne: durch persönliche Kontakte zwischen den Wissenschaftlern untereinander ... mehr

  • q&more Artikel

    Sex oder Tod

    Diatomeen sind einzellige Mikroalgen, die aufgrund ihrer filigranen und reich verzierten mineralisierten Zellwand auch als Kieselalgen bezeichnet werden. Trotz ihrer mikroskopisch kleinen Zellen spielen ­diese Algen eine fundamentale ­Rolle für marine Ökosysteme und sind sogar zentrale Akte ... mehr

    Wertgebende Komponenten

    Die Isolierung bioaktiver Pflanzeninhaltsstoffe, ätherischer Öle bzw. pflanzlicher Farb- und Aromastoffe erfordert aufwändige und kostenintensive Verfahren. Oft ist jedoch für verschiedene Anwendungen eine Isolierung der Einzelkomponenten nicht erforderlich, es genügt deren Konzentrierung. ... mehr

    Gesundes Fett im Fisch

    Aufgrund unterschiedlicher gesundheits­fördernder Effekte sind Omega-3-Fettsäuren buchstäblich in aller Munde, aber nur langsam lichten sich die Schleier bezüglich der zu Grunde liegenden molekularen Wirkmechanismen. Es wird zunehmend klar, dass man sehr kritisch prüfen muss, um welche Fett ... mehr

  • Autoren

    Prof. Dr. Stefan H. Heinemann

    Stefan H. Heinemann, geb. 1960, studierte Physik an der Universität Göttingen. Nach zweijähriger Forschungszeit an der Yale University, New Haven, USA, promovierte er 1990 am Max-Planck-Institut für biophysikalische Chemie in Göttingen. Nach einem Forschungsaufenthalt an der Standford Unive ... mehr

    Prof. Dr. Gerhard K. E. Scriba

    Gerhard K. E. Scriba, geb. 1956, studierte Pharmazie in Bonn und erhielt 1980 die Approbation für Apotheker. Er promovierte an der Westfälischen Wilhelms-Universität Münster, wo er sich 1995 für das Fach Pharmazeutische Chemie habilitierte. 1999 folgte er einem Ruf auf die C3-Professur für ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.