Meine Merkliste
my.chemie.de  
Login  

Enzym knackt stabile aromatische Verbindungen

Wissenschaftler erklären, wie Bakterien Benzolringe ohne Sauerstoff abbauen

14.07.2015

Grafik: Simona G. Huwiler (Arbeitsgruppe Boll) und Dr. Till Biskup (Arbeitsgruppe Weber), Universität Freiburg

Die Freiburger Forschungsgruppe bringt Licht ins Dunkel einer ungewöhnlichen biologischen Reaktion mit einem Wolfram-Atom (dunkelrot) im aktiven Zentrum, das einen aromatischen Ring (grün) durch Reduktion destabilisiert.

Ein Forschungsteam der Universität Freiburg um Prof. Dr. Matthias Boll und seine Doktorandin Simona G. Huwiler hat herausgefunden, wie Bakterien mithilfe eines Enzyms aromatische Benzolringe – extrem stabile Verbindungen aus sechs Kohlenstoffatomen – ohne Beteiligung von Sauerstoff abbauen können. Die Analyse der Kristallstruktur dieses Schlüsselenzyms ergab, dass ein Wolfram-Atom im katalytischen Zentrum maßgeblich an der Zerstörung des aromatischen Systems des Benzolrings beteiligt ist. Wolfram ist das schwerste Metall mit biologischer Funktion. Da Benzolringe in der Natur häufig vorkommen, ist es für Mensch und Umwelt wichtig zu wissen, wie sie im globalen Kohlenstoffzyklus recycelt werden. Dies gilt insbesondere, weil sich im Erdöl schwer abbaubare, oft toxische und krebserzeugende aromatische Verbindungen anreichern. Das Team veröffentlichte die Ergebnisse in der Fachzeitschrift „Nature Chemical Biology“.

Aromatische Benzolringe werden überwiegend von Holzpflanzen gebildet und zeichnen sich durch einen charakteristischen Geruch aus. Seit langem ist bekannt, dass sauerstoffabhängige Bakterien diese Ringe mit Hilfe von Sauerstoff abbauen. Wie jedoch Bakterien in Bereichen ohne Sauerstoff wie in Sedimenten von Meeren oder Flüssen, kontaminiertem Grundwasser oder Biogasanlagen aromatische Verbindungen abbauen, war bislang unklar. Das Team um Boll hat durch die Aufklärung der Struktur des Enzyms Klasse-II-Benzoyl-CoA-Reduktase entdeckt, wie ein Wolfram-Cofaktor das aromatische System des Benzolrings ohne Beteiligung von Sauerstoff aufbrechen kann. Die Reaktion reduziert das aromatische Ringsystem zu einem nicht-aromatischen zyklischen Dien. Der weitere Abbau dieses Produktes ist dann vergleichsweise einfach.

Eine analoge Reaktion ist seit 70 Jahren bekannt: 1944 beschrieb Arthur Birch die heute als Birch-Reduktion in Lehrbüchern bekannte Synthese von zyklischen Dienen aus aromatischen Ringen. Sie wird unter anderem bei der Synthese von Arzneimitteln eingesetzt, benötigt allerdings giftige Substanzen wie Alkali-Metalle und Ammoniak. Ein Biokatalysator, der ohne diese giftigen Substanzen eine gleichartige Reaktion katalysiert, ist biotechnologisch interessant.

Fakten, Hintergründe, Dossiers
  • Uni Freiburg
  • Bakterien
  • Enzyme
Mehr über Uni Freiburg
  • News

    Berührungslose Ladesysteme

    Das Start-up Blue Inductive entwickelt berührungslose Ladesysteme für Elektroautos und mobile Roboter – und hat beim diesjährigen Businessplanwettbewerb „CyberOne Hightech Award Baden-Württemberg“ im Branchenschwerpunkt Industrielle Technologien den 1. Platz belegt. Die Auszeichnung ist mit ... mehr

    Ionen im Rampenlicht

    Die Ergebnisse einer Forschungsgruppe des Physikalischen Instituts der Universität Freiburg bekommen in der Fachzeitschrift „Nature Photonics“ einen besonderen Platz: Ein Begleitartikel „News & Views“ in der Printversion des wissenschaftlichen Magazins hebt die Arbeit des Teams um Alexander ... mehr

    Hinweise auf Zerfall des Higgs-Teilchens in Quarks

    Die Freiburger Arbeitsgruppe von Prof. Dr. Karl Jakobs und Dr. Christian Weiser hat als Teil der ATLAS-Kollaboration dazu beigetragen, starke Hinweise dafür zu finden, dass das Higgs-Teilchen unter anderem in Quarks zerfällt. Die Forscher haben Datensätze analysiert, die in den Jahren 2015 ... mehr

  • Firmen

    Albert-Ludwigs-Universität Freiburg

    mehr

  • Universitäten

    Albert-Ludwigs-Universität Freiburg

    Die Albert-Ludwigs-Universität liegt nicht nur im Herzen der Stadt Freiburg - die Studierenden, Professor/innen und Mitarbeiter/innen sind auch in den Alltag der Bürgerinnen und Bürger der Schwarzwaldhauptstadt integriert. Darin liegt auch einer der Reize, die das Studium in Freiburg so bel ... mehr

  • q&more Artikel

    Modulare Biofabriken auf Zellebene

    Der „gebürtige Bioorganiker“ hatte sich bei seiner Vorliebe für komplexe Molekülarchitekturen nie die klassische Einteilung von synthetischen Polymeren und biologischen Makromolekülen zu eigen gemacht. Moleküle sind nun mal aus Atomen zusammengesetzt, die einen wie die anderen, warum da ein ... mehr

    Lesezeichen

    Aus einer pluripotenten Stammzelle kann sowohl eine Muskel- als auch eine Leberzelle entstehen, die trotz ihres unterschiedlichen Erscheinungsbildes genetisch identisch sind. Aus ein und demselben ­Genotyp können also verschiedene Phänotypen entstehen – die Epigenetik macht es möglich! Sie ... mehr

  • Autoren

    Dr. Stefan Schiller

    Stefan M. Schiller, Jg. 1971, studierte Chemie mit Schwerpunkt Makromolekulare und Biochemie in Gießen, Mainz und an der University of Massachusetts. Er promovierte bis 2003 am Max-Planck-Institut für Polymerforschung in Mainz über biomimetische Membransysteme, es folgten Forschungsaufentha ... mehr

    Julia M. Wagner

    Julia M. Wagner studierte Pharmazie in Freiburg (Approbation 2008). Seit 2008 ist sie Doktorandin und wissenschaftliche Mitarbeiterin im Arbeitskreis von Professor Dr. M. Jung. In ihrer Forschung beschäftigt sie sich mit der zellulären Wirkung von Histon-Desacetylase-Inhibitoren. mehr

    Prof. Dr. Manfred Jung

    Manfred Jung hat an der Universität Marburg Pharmazie studiert (Approbation 1990) und wurde dort in pharmazeutischer Chemie bei W. Hanefeld promoviert. Nach einem Postdoktorat an der Universität Ottawa, Kanada begann er 1994 am Institut für Pharmazeutische Chemie der Universität Münster mit ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.