Von Honigwabengittern und Quantencomputern

Simulationen sagen neuartige Eigenschaften voraus

31.05.2016 - Deutschland

Eine einzelne Schicht aus Kohlenstoffatomen, geordnet in einem Honigwabengitter – seit seiner Entdeckung fasziniert Graphen die Wissenschaft und Industrie. Ordnet man nach diesem Muster jedoch Übergangsmetall-Ionen wie Mangan in einer Oxidheterostruktur an, ergeben sich neuartige Materialeigenschaften, die noch vielversprechender sein können als das derzeit hochgehandelte Graphen. Dies belegen Ergebnisse quantenmechanischer Simulationen aus der Arbeitsgruppe von Professor Dr. Rossitza Pentcheva vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE).

R. Pentcheva, D. Doennig

Seitenansicht der Oxidheterostruktur (links) sowie die Drauf- und Seitenansicht der Elektronendichte des gebogenen Honigwabengitters der LaMnO3 Schicht (rechts).

In der physikalischen Festkörperforschung tun sich nicht selten an den Rändern von Materialien buchstäblich neue Welten auf: Wenn Perowskite, also Oxide, die aus Sauerstoff, Metallionen und seltene Erdelemente bestehen, entlang der ungewöhnlichen (111) kristallographischen Richtung aufgewachsen werden, so bilden je zwei Metallschichten ein gebogenes Honigwabengitter, ähnlich wie in Graphen. Übergangsmetalloxide jedoch bieten aufgrund ihrer stark wechselwirkenden Elektronen ganz neue Chancen, da sie verschiedene magnetische und elektronische Zustände einnehmen können. Seit kurzem ist es nun möglich, dieses Gitter in einer Heterostruktur zu realisieren, wie Experimente von Kollegen aus den USA und aus China zeigen. „Diese Honigwabenstruktur kombiniert mit den Möglichkeiten eines Oxids ist eine Spielwiese sowohl für die Grundlagenforschung wie auch für Anwendungen, weil ganz neue Eigenschaften realisiert werden können, die nicht im Volumenkristall oder anderen Anordnungen auftreten können“, erklärt Pentcheva.

Für die nötigen ab initio Simulationen „füttert“ die Expertin für computergestützte Materialphysik ihren Rechner mit Informationen über Kristallstruktur und chemische Elemente des Materials und lässt ihn anschließend die elektronische Struktur und magnetische Eigenschaften berechnen. So konnte sie belegen, dass Nickelat ein Antiferromagnet mit einer Orbitalordnung ist, die nicht im Volumen vorkommt. Durch systematische Untersuchung aller Kationen der 3d-Übergangsmetallreihe, wie zum Beispiel Titan, Eisen oder Kobalt, fand sie heraus, dass Lanthanmanganat unter bestimmten Bedingungen ein Kandidat für einen sogenannten Chern-Isolator ist. Das ist ein System, das im Volumen isolierend und an der Oberfläche leitend ist, jedoch ohne wärmebedingte Verluste. Eine weitere Besonderheit: Chern-Isolatoren sind magnetisch, weswegen ihre Funktion nicht auf ein externes Magnetfeld angewiesen ist. Damit würde das Material für künftige Anwendungen wie dem Quantencomputer noch vielversprechender sein als das momentan hochgehandelte Graphen oder andere Materialien, die eine viel zu kleine Bandlücke aufweisen und zudem oft toxisch sind.

Pentchevas Ergebnisse helfen somit nicht nur dabei, die Messdaten der amerikanischen und chinesischen Kollegen zu interpretieren. Vielmehr werfen sie ein „Schlaglicht“ auf vielversprechende Materialkombinationen für zukünftige Experimente und Anwendungen. „In der Theorie haben wir die entscheidenden Eigenschaften für diese exotischen Systeme vorhergesagt, nun sind wir gespannt auf die experimentelle Umsetzung“, freut sich Pentcheva, deren Projekt durch die Deutsche Forschungsgemeinschaft (DFG) im SFB/TR80 gefördert wird.

Originalveröffentlichung

D. Doennig, S. Baidya, W.E. Pickett and R. Pentcheva; "Design of Chern and Mott insulators in buckled 3d oxide honeycomb lattices"; Phys. Rev. B; 93, 165145 (2016)

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Entdecken Sie die neuesten Entwicklungen in der Batterietechnologie!