Meine Merkliste
my.chemie.de  
Login  

Künstliche Intelligenz ermöglicht die Entdeckung neuer Materialien

22.09.2016

Universität Basel, Departement Chemie

Die Matrix visualisiert die Bildungsenergie – ein Indikator für die Stabilität – von rund zwei Millionen möglichen Verbindungen: Jedes Pixel entspricht einem der 2 Millionen Kristalle, die aus je vier chemischen Elementen bestehen. Je nach Kombination der Elemente weisen sie einen hohen (rot) oder tiefen (blau) Energiewert auf. Zwei Elemente sind vertikal und horizontal spezifiziert; jede Box enthält nochmal eine entsprechende Auflösung für die beiden weiteren Elemente.

Mit Methoden der künstlichen Intelligenz haben Chemiker der Universität Basel die Eigenschaften von rund 2 Millionen Kristallen berechnet, die aus vier verschiedenen chemischen Elementen zusammengesetzt sind. Dabei konnten die Forscher 90 bisher unbekannte Kristalle identifizieren, die thermodynamisch stabil sind und als neuartige Werkstoffe in Betracht kommen.

Elpasolith ist ein glasiges, transparentes, glänzendes und weiches Mineral mit kubischer Kristallstruktur. Erstmals entdeckt im El Paso County (USA), kann man es in den Rocky Mountains, in Virginia oder in den Apenninen finden. In experimentellen Datenbanken ist Elpasolith einer der häufigsten Kristalle, der aus vier verschiedenen chemischen Elementen besteht. Je nach ihrer Zusammensetzung können Elpasolithe metallische Leiter, Halbleiter oder Isolatoren sein, und manchmal können sie auch Licht emittieren, wenn sie Strahlung ausgesetzt werden.

Diese Eigenschaften machen Elpasolithe zu interessanten Materialkandidaten für Szintillatoren (mit denen sich etwa bestimmte Teilchen nachweisen lassen) und andere Anwendungen. Aufgrund ihrer chemischen Komplexität ist es rechnerisch nachgerade unmöglich, die Stabilität und Eigenschaften aller theoretisch denkbaren Kombinationen von vier Elementen in der Elpasolithstruktur quantenmechanisch vorherzusagen.

Statistische Analyse mithilfe von maschinellem Lernen

Dank modernen Methoden der künstlichen Intelligenz ist es Felix Faber, Doktorand in der Gruppe von Prof. von Lilienfeld am Departement der Chemie der Universität Basel, nun gelungen, dieses Materialdesign-Problem zu lösen. Dazu berechnete er zunächst die quantenmechanische Vorhersagen von Tausenden von Elpasolithkristallen mit zufällig ausgewählter chemischer Zusammensetzung. Die Resultate nutzte er, um statistische, sogenannte Machine-Learning-Modelle (ML-Modelle), zu trainieren. Die so verbesserte algorithmische Herangehensweise erreichte eine prädiktive Genauigkeit, welche üblichen quantenmechanischen Näherungen entspricht.

Die ML-Modelle haben den Vorteil, dass sie um viele Grössenordnungen schneller sind als die entsprechenden quantenmechanischen Berechnungen. Innerhalb eines Tages konnte das ML-Modell die Bildungsenergien – ein Indikator für die chemische Stabilität – für alle 2 Millionen Elpasolithkristalle vorhersagen, die man aus allen Hauptgruppenelementen des Periodensystems der Elemente theoretisch erhalten kann. Für die entsprechenden quantenmechanischen Berechnungen hätte hingegen ein Hochleistungsrechner über 20 Millionen Rechenstunden verbraucht.

Unbekannte Materialien mit interessanten Eigenschaften

Die Analyse der berechneten Eigenschaften hat zu neuen Erkenntnissen über diese Materialklasse geführt. Die Forscher konnten fundamentale Bindungstrends aufdecken und unter den 2 Millionen Kristallen 90 bisher unbekannte Kristalle identifizieren, die gemäss quantenmechanischen Vorhersagen thermodynamisch stabil sind.

Aufgrund dieser potenziellen Eigenschaften wurden Elpasolithe in die Werkstoffdatenbank «Materials Project» aufgenommen, die eine zentrale Rolle innerhalb der Materials Genome Initiative spielt. Diese wurde 2011 von der US-amerikanischen Regierung lanciert, um mittels rechnerischer Unterstützung die Entdeckung und experimentelle Synthese neuartiger interessanter Materialien und Werkstoffe zu beschleunigen.

Einige der neu entdeckten Elpasolithkristalle weisen exotische elektronische Eigenschaften und ungewöhnliche Zusammensetzungen auf. «Die Kombination von künstlicher Intelligenz, Big Data, Quantenmechanik und Hochleistungsrechnen ermöglicht vielversprechende neue Wege, um unser Verständnis von Materialien zu vertiefen und um neue Materialien zu entdecken, die bloss mithilfe von menschlicher chemischer Intuition nicht in Erwägung gezogen worden wären», kommentiert Studienleiter Prof. Anatole von Lilienfeld die Ergebnisse.

Fakten, Hintergründe, Dossiers
Mehr über Universität Basel
  • News

    Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

    Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder i ... mehr

    Mit Spiegeln zur besseren Qualität von Lichtteilchen

    Wissenschaftlern vom Departement Physik der Universität Basel und vom Swiss Nanoscience Institute ist es gelungen, die Qualität von einzelnen Photonen, die durch ein Quantensystem generiert werden, drastisch zu verbessern. Die Wissenschaftler konnten damit eine zehn Jahre alte theoretische ... mehr

    Schneller Quantenspeicher für Photonen

    Physiker der Universität Basel haben einen Speicher für Photonen entwickelt. Diese Quantenteilchen bewegen sich mit Lichtgeschwindigkeit und eignen sich daher für schnelle Datenübertragung. Den Forschenden ist es gelungen, sie in einem Atomgas zu speichern und wieder auszulesen, ohne dass s ... mehr

  • Universitäten

    Universität Basel

    Tradition - In Basel steht die älteste Universität der Schweiz. Sie wurde 1460 auf Initiative von Stadtbürgern gegründet. Sie ist eine moderne, mitten in der Stadt gelegene Hochschule mit einem attraktiven Forschungs-, Lehr- und Dienstleistungsangebot. Selbstverwaltet - Seit 1996 geniesst ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.