Meine Merkliste
my.chemie.de  
Login  

Mit Spiegeln zur besseren Qualität von Lichtteilchen

13.09.2017

University of Basel, Department of Physics

NV-Zentren in Diamanten haben die besondere Eigenschaft, dass der Zustand des Elektronenspins über die von ihnen ausgesendeten Lichtteilchen ausgelesen werden können. Wird nun solch ein Diamant mit NV-Zentrum in einen Hohlraum zwischen zwei Spiegeln platziert, lässt sich die Rate und Ausbeute der emittierten Lichtteilchen deutlich verbessern. Damit werden wichtige Bedingungen erfüllt, um NV-Zentren für Anwendungen in der Quantentechnologie zu nutzen.

Wissenschaftlern vom Departement Physik der Universität Basel und vom Swiss Nanoscience Institute ist es gelungen, die Qualität von einzelnen Photonen, die durch ein Quantensystem generiert werden, drastisch zu verbessern. Die Wissenschaftler konnten damit eine zehn Jahre alte theoretische Vorhersage erfolgreich umsetzen. Mit dieser Arbeit, die kürzlich in Physical Review X veröffentlicht wurde, kommen sie zukünftigen Anwendungen in der Quanteninformationstechnologie einen wichtigen Schritt näher.

Seit einigen Jahren arbeiten Wissenschaftler daran den Spin von Elektronen zu nutzen, um damit Informationen zu speichern und zu verarbeiten. Ein möglicher Ansatz ist es, ein Quantensystem zu nutzen, bei dem der Quantenzustand des Elektronenspins mit dem von ausgesandten Lichtteilchen (Photonen) verbunden ist.

Bessere Photonen erforderlich

Als bewährte Struktur für diesen Ansatz, in der sich Elektronenspins leicht auslesen und manipulieren lassen, gelten sogenannte Stickstoff-Fehlstellenzentren (NV-Zentren). Dabei handelt es sich um natürliche Defekte im Kristallgitter von künstlichen Diamanten.

Für die Quanteninformationsverarbeitung sind NV-Zentren besonders interessant, weil sich damit einzelne Lichtteilchen (Photonen) aussenden lassen, die Informationen über den Zustand ihres Elektronenspins mit sich tragen. Diese Photonen wiederum können dadurch eine quantenmechanische Verschränkung zwischen verschiedenen NV-Zentren herstellen, die auch über grosse Distanzen bestehen bleibt und somit zur Datenübertragung genutzt werden kann.

Für eine Verwendung in der Quanteninformationstechnik muss jedoch die Quantität und vor allem auch die Qualität der ausgesandten Photonen deutlich verbessert werden, da bisher nur ein Bruchteil der Photonen für die Erzeugung einer Verschränkung genutzt werden kann.

Gelungene Optimierung

Dem Doktoranden Daniel Riedel ist es nun gelungen, die Ausbeute der verwendbaren Photonen dieser NV-Zentren von bisher drei auf nun fünfzig Prozent zu steigern. Zudem konnte Riedel die Rate, mit der die Photonen emittiert werden, fast verdoppeln.

Er erreichte diese signifikanten Verbesserungen, indem er einen nur einige 100 Nanometer grossen Diamanten zwischen zwei winzige Spiegel platzierte. Bereits vor zehn Jahren war theoretisch beschrieben worden, dass die Platzierung der NV-Zentren in einem Hohlraum die Ausbeute der Photonen steigern müsse. Jedoch war es bisher keiner Forschungsgruppe gelungen, die Theorie in die Praxis umzusetzen.

Die Arbeit entstand im Rahmen einer Dissertation an der 2012 gegründeten Doktorandenschule des Swiss Nanoscience Institute. «Wir haben eine wichtige Hürde auf dem Weg zum Quanteninternet genommen», bemerkt Betreuer Professor Richard Warburton vom Departement Physik der Universität Basel.

Professor Patrick Maletinsky, der die Arbeit ebenfalls betreut hat, fügt hinzu: «Die einzigartige Kombination von Knowhow im Bereich der Photonik, der besonderen Diamantstrukturen sowie der Nanofabrikation hier in Basel hat es ermöglicht, dass wir diese seit 10 Jahren bestehende Herausforderung erstmals meistern konnten.»

Fakten, Hintergründe, Dossiers
  • Universität Basel
  • Swiss Nanoscience Institute
  • Photonen
  • Quantensysteme
  • Elektronenspin
  • Diamanten
Mehr über Universität Basel
  • News

    Wasser ist nicht gleich Wasser

    Wassermoleküle kommen in zwei verschiedenen Formen mit fast identischen physikalischen Eigenschaften vor. Erstmals ist es nun gelungen, die beiden Formen zu trennen und dabei zu zeigen, dass sie unterschiedliche chemische Reaktivitäten aufweisen können. Das berichten Forschende der Universi ... mehr

    Einstein-Podolsky-Rosen-Paradoxon erstmals in Vielteilchensystem beobachtet

    Physiker der Universität Basel haben das quantenmechanische Einstein-Podolsky-Rosen Paradoxon erstmals in einem System aus mehreren hundert miteinander wechselwirkenden Atomen beobachtet. Das Phänomen geht auf ein berühmtes Gedankenexperiment aus dem Jahr 1935 zurück. Es erlaubt, präzise Vo ... mehr

    Einzelne Fremdatome in Graphen nachweisbar

    Einem Team mit Physikern der Universität Basel ist es gelungen, einzelne Fremdatome in Graphenbändern mithilfe der Rasterkraftmikroskopie eindeutig abzubilden. Aufgrund der gemessenen Kräfte in dem zweidimensionalen Kohlenstoffgitter des Graphens konnten sie erstmals Bor- und Stickstoff ide ... mehr

  • Universitäten

    Universität Basel

    Tradition - In Basel steht die älteste Universität der Schweiz. Sie wurde 1460 auf Initiative von Stadtbürgern gegründet. Sie ist eine moderne, mitten in der Stadt gelegene Hochschule mit einem attraktiven Forschungs-, Lehr- und Dienstleistungsangebot. Selbstverwaltet - Seit 1996 geniesst ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.