Meine Merkliste
my.chemie.de  
Login  

Elektrodenmaterialien aus der Mikrowelle

Neues Verfahren zur Synthese von Hochvolt-Kathoden für Lithiumionen-Akkus

19.10.2017

Andreas Battenberg / TUM

Pinkfarbenes, mikrokristallines Lithium-Kobaltphosphat.

Katia Rodewald / TUM

Elektronenmikroskopische Aufnahme der plättchförmigen Lithium-Kobaltphosphat-Kristalle.

Power für unterwegs ist gefragt: Je leistungsfähiger der Akku, desto größer die Reichweite von Elektroautos und desto länger die Betriebszeit von Handys und Laptops. Dr. Jennifer Ludwig von der Technischen Universität München (TUM) hat ein Verfahren entwickelt, mit dem sich das vielversprechende Hochvolt-Kathodenmaterial Lithium-Kobaltphosphat schnell, einfach, günstig und in höchster Qualität herstellen lässt.

Die Hoffnung ist pink: Das Pulver, das Jennifer Ludwig vorsichtig in eine Glasschale schüttet und das im Licht der Laborlampe rosarot leuchtet, hat das Potenzial, Akkus in Zukunft noch leistungsfähiger zu machen. „Das Lithium-Kobaltphosphat kann erheblich mehr Energie speichern als herkömmliche Kathodenmaterialien“, erklärt die Chemikerin.

Die Mitarbeiterin von Tom Nilges, Inhaber der Professur für Synthese und Charakterisierung innovativer Materialien, hat ein Verfahren entwickelt, mit dem sich das pinke Pulver schnell, mit geringem Energieaufwand und in bester Qualität herstellen lässt.

Lithium-Kobaltphosphat gilt unter Batterieforschern seit einiger Zeit als Material der Zukunft. Es arbeitet bei höherer Spannung als das bisher verwendete Lithium-Eisenphosphat und erreicht daher eine höhere Energiedichte – 800 Wattstunden pro Kilogramm statt bisher knapp 600 Wattstunden.

Bisherige Verfahren: teuer und energieaufwändig

Bisher war die Herstellung des vielversprechenden Hochvolt-Kathodenmaterials jedoch aufwändig, energieintensiv und wenig effizient: Man benötigte drastische Bedingungen mit Temperaturen von 900 Grad.

„Die Kristalle, die sich unter diesen extremen Bedingungen bilden, sind zudem unterschiedlich groß und müssen in einem zweiten energieintensiven Schritt erst zu nanokristallinem Pulver vermahlen werden“, berichtet Ludwig.

Die entstehenden Körnchen besitzen zudem nur in einer Richtung genügend ionische Leitfähigkeit. Auf dem größten Teil der Oberfläche läuft die chemische Reaktion zwischen Elektrodenmaterial und Elektrolyt im Akku nur schleppend ab.

Kristalle nach Maß

Die von Jennifer Ludwig entwickelte Mikrowellen-Synthese löst all diese Probleme auf einen Schlag: Für die Gewinnung von hochreinem Lithium-Kobaltphosphat benötigt man nur ein kleines Mikrowellen-Gerät und eine halbe Stunde Zeit.

Die Reagenzien werden zusammen mit einem Lösungsmittel in einem Teflon-Behälter erhitzt. Gerade einmal 600 Watt Leistung reichen aus, um die notwendige Temperatur von 250 Grad zu erzeugen und die Kristallbildung anzuregen.

Die sich dabei bildenden flachen Plättchen haben einen Durchmesser von weniger als einem Mikrometer, eine Dicke von wenigen hundert Nanometern, und die Achse höchster Leitfähigkeit ist in Richtung Oberfläche orientiert. „Diese Form sorgt für eine bessere elektrochemische Leistungsfähigkeit, weil die Lithium-Ionen nur kurze Wege im Kristall zurücklegen müssen“, erläutert Ludwig.

Gezielte Steuerung der Reaktion

Und noch ein weiteres Problem konnte die Chemikerin bei ihren Experimenten lösen: Bei Temperaturen von über 200 Grad und unter hohem Druck entsteht mitunter nicht das gewünschte Lithium-Kobaltphosphat, sondern ein bisher unbekanntes, komplexes Kobalt-Hydroxid-Hydrogenphosphat.

Jennifer Ludwig gelang es, den Reaktionsweg aufzuklären, die chemische Verbindung zu isolieren und dessen Struktur und Eigenschaften zu bestimmen. Da die neue Verbindung als Batteriematerial ungeeignet ist, modifizierte sie die Reaktionsbedingungen so, dass nur das gewünschte Lithium-Kobaltphosphat entsteht.

„Mit dem neuen Herstellungsverfahren können wir nun in einem einzigen Prozessschritt die leistungsfähigen, plättchenförmigen Lithium-Kobaltphosphat-Kristalle maßgeschneidert und in hoher Qualität herstellen“, urteilt Professor Nilges. „Damit ist eine weitere Hürde auf dem Weg zu neuen Hochvolt-Materialien überwunden.“

Für die Entwicklung ihres neuen Synthese-Verfahrens erhielt Jennifer Ludwig den Evonik-Forschungspreis, den der Chemie-Konzern jährlich an herausragende Nachwuchswissenschaftler vergibt.

Fakten, Hintergründe, Dossiers
  • Kathoden
  • Kathodenmaterialien
  • Lithium-Kobaltphosphat
Mehr über TU München
  • News

    Chemische Hotspots

    Chemie live: Mit einem Rastertunnelmikroskop konnten Forscher an der Technischen Universität München (TUM) erstmals die Aktivität von Katalysatoren während einer chemischen Reaktion detailgenau verfolgen. Die Messungen zeigen, wie die Oberflächenstruktur der Katalysatoren ihre Aktivität bee ... mehr

    Zehn Billionen Atome in Reih’ und Glied

    Eine Atomlage dünn, reißfest,  stabil. Graphen gilt als Werkstoff der Zukunft. Ideal, um beispielsweise ultraleichte Elektronik oder hochstabile mechanische Bauteile zu fertigen. Doch die hauchdünnen Kohlenstoff-Schichten sind schwer zu produzieren. An der Technischen Universität München (T ... mehr

    Materialien, die sich selbst entsorgen

    Materialien, die sich selbst zusammenfügen und am Ende ihrer Lebenszeit einfach wieder verschwinden – in der Natur gibt es sie in Hülle und Fülle. Forschern an der Technischen Universität München (TUM) ist es nun gelungen, supramolekulare Materialien zu entwickeln, die zu einen vorher besti ... mehr

  • Videos

    Scientists pair up two stars from the world of chemistry

    Many scientists consider graphene to be a wonder material. Now, a team of researchers at the Technical University of Munich (TUM) has succeeded in linking graphene with another important chemical group, the porphyrins. These new hybrid structures could also be used in the field of molecular ... mehr

  • Universitäten

    Technische Universität München

    Mit ihren 13 Fakultäten und 460 Professoren bildet die TUM in 133 Studiengängen ca. 25.000 Studierende aus, davon 20 Prozent aus dem Ausland. Die Schwerpunktfelder sind die Ingenieur- und Naturwissenschaften, Medizin und Lebenswissenschaften sowie die Wirtschaftswissenschaften und Lehrerbil ... mehr

    Technische Universität München im Wissenschaftszentrum Straubing

    mehr

  • q&more Artikel

    Translation

    Die Struktur der chemischen und pharmazeutischen Großindustrie hat sich gewandelt. Traditionelle Zentralforschungsabteilungen, in denen grundlagennahe Wissenschaft ­betrieben wurde, sind ökonomischen Renditebetrachtungen zum Opfer gefallen. mehr

    Molekülgenaue ­Detektivarbeit

    Die drei Ausdrücke im Titel ebenso wie „Known Unknowns“ und „Unknown Unknowns“ sind eingedeutschte Schlagwörter, die derzeit die analytische Wasserszene durcheinanderwirbeln. Die Vorgehensweise in der Nutzung eben dieser Technologien ist jedoch häufig noch nicht ­einheitlich. mehr

    Renaissance der ­kleinen Moleküle

    Pyruvat, Succinat, Fumarat, Oxalacetat, Mevalonat und Hydroxymethylgluta­ryl-CoA – wer erinnert sich nicht an seine ­Biochemieprüfungen. Allosterische ­Regulation, Substrate, Produkte, Metabolite. Gene­rationen von Biochemikern haben uns die Grundlage für das Verständnis von Stoffwechselvor ... mehr

  • Autoren

    Prof. Dr. Arne Skerra

    Arne Skerra, Jg. 1961, studierte Chemie an der TU Darmstadt und wurde 1989 zum Dr. rer. nat. am GenZentrum der LMU München promoviert. Nach Stationen am MRC Laboratory of Molecular Biology in Cambridge, Großbritannien und am Max-Planck-Institut für Bio­physik in Frankfurt/M. wurde er 2004 P ... mehr

    Dr. Thomas Letzel

    Thomas Letzel, geb. 1970, studierte Chemie (1992–1998) an der TU München sowie der LMU München und promovierte 2001 mit einem umweltanalytischen Thema an der TU München und absolvierte im Anschluss einen zweijährigen Postdoc-Aufenthalt an der Vrijen Universiteit Amsterdam. 2009 habilitierte ... mehr

    Prof. Dr. Hannelore Daniel

    Hannelore Daniel, Jg. 1954, studierte Ernährungswissenschaft an der Justus-Liebig-Universität Gießen und promovierte 1982. 1989 habilitierte Sie sich für Physiologie und Biochemie der Ernährung. Danach war sie bis Ende 1992 an der School of Medicine der Universität Pittsburgh (USA) tätig un ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.