Solarzellen aus neuartigem Halbleiter-Material

04.04.2001
Befördert durch das "100.000-Dächer-Programm" und das "Erneuerbare-Energien-Gesetz", erlebt die Solarenergie Steigerungsraten von zuletzt 30 Prozent pro Jahr. Der Bedarf wird allerdings fast ausschließlich durch kristalline Silizium-Solarzellen gedeckt. Weil diese in der Herstellung relativ teuer sind, arbeitet der Jenaer Physiker Prof. Dr. Wolfgang Witthuhn im Verbund mit der TU Ilmenau und einigen mittelständischen Thüringer Firmen an einem technologischen Wandel. Die Arbeitsgruppe setzt auf neuartige Materialsysteme, die eine billigere Solarzellen-Produktion erlauben und sehr effizient arbeiten. Halbleiter aus Kupfer-Indium-Schwefel-(CIS-)Verbindungen versprechen erhebliche Kostenvorteile. "Wir haben bereits Dünnschichten aus solchem CIS hergestellt, die eine sehr homogene, geradezu optimale Materialstruktur besitzen und bei der Energiegewinnung in Photovoltaik-Anlagen einen sehr hohen Wirkungsgrad ermöglichen werden", verrät Witthuhn. "Die Röntgenanalyse und die Strukturanalysen im Teilchenbeschleuniger stimmen uns von der materialwissenschaftlichen Seite her sehr hoffnungsvoll." Ein weiterer entscheidender Vorteil liegt in einer künftigen industriellen Produktion: Während herkömmliche Silizium-Zellen aufwändige Reinigungs- und Herstellungsverfahren erfordern, kommen beim CIS einfache, bereits bewährte Beschichtungstechnologien zur Anwendung. Damit ist diese Technologie sehr preiswert und umweltfreundlich. Zudem wird für den Photovoltaik-Prozess eine nur wenige Mikrometer dünne Schicht benötigt; zum Vergleich: Die üblichen Silizium-Zellen sind hundertmal dicker. Der Grund dafür liegt in der Natur des Sonnenlichts: Die Strahlungsintensität der Sonne ist im grünen Spektralbereich am größten, und diese Lichtquanten treffen auf dem Halbleitermaterial mit 1,5 Elektrovolt auf. Das ist exakt die Energiemenge, um im CIS-Halbleiter die Bandlücke zwischen dem so genannten Valenz- und Leitungsband zu überwinden, das heißt: um Elektronen aus dem Valenzband in ein höheres Energieniveau zu katapultieren. Außerdem geschieht dieser Vorgang in einem direkten Sprung, bei dem die Elektronen unmittelbar ihren neuen Platz im Leitungsband zuverlässig finden. Deshalb darf die Kupfer-Indium-Schwefel-Schicht auch so dünn sein. Grundsätzlich funktioniert eine Solarzelle ähnlich wie eine Batterie. Um das Bauteil zu komplettieren, muss der aktive Halbleiter aber mit einer leitenden Metallschicht verbunden und die Oberfläche mit einer durchsichtigen Metalloxid-Schicht vor Umwelteinflüssen geschützt werden. Genau an dieser Stelle hapert es indes bei Witthuhns Projekt. Den Sprung vom Halbleiter zum Photovoltaik-Prototypen hat er deshalb noch nicht geschafft, weil er nur schwer finanzielle Förderung für seine Forschung findet. Unter den etablierten Herstellern will niemand ohne eine garantierte Erfolgsaussicht von der erprobten Silizium-Technologie ablassen, und in der Thüringer Forschungsförderungspolitik gibt es offenbar unklare Kompetenzen hinsichtlich der Zuständigkeit. "Seit über einem Jahr kommen wir nur in kleinen Schritten voran", klagt Witthuhn, "weil die Antragswege so zäh sind." Inzwischen gibt es Projektförderungen vom Bundesforschungsministerium und von der VW-Stiftung, das Thüringer Forschungsministerium leistete eine Anschubfinianzierung für die Verdampfungsanlage, mit der die CIS-Dünnschichten hergestellt werden. "Allerdings haben wir noch keine Betriebs- und Personalmittel", so Witthuhn, "und um die optimale Konfiguration der künftigen Solarzelle entwickeln zu können, brauchen wir weiteres Equipment." Zum Beispiel einen Solargenerator, der unter Laborbedingungen präzise die natürliche Sonneneinstrahlung simuliert. Witthuhn: "Wenn sich die zuständigen Ministerien in ihrer Förderpolitik einig wären, könnten wir schon bald die ersten Prototypen testen." In den Augen des Physikers spielt dabei nicht zuletzt das Thema Standortsicherung eine entscheidende Rolle. "Inzwischen rüst

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Chemie?