Meine Merkliste
my.chemie.de  
Login  

Ammoniak auf Phosphorkatalysator

Ammoniaksynthese durch Elektroreduktion von Stickstoff auf Nanoblättchen aus schwarzem Phosphor

17.01.2019

© Wiley-VCH

Nach über 100 Jahren Haber-Bosch-Verfahren suchen Wissenschaftler nach weniger energieintensiven Alternativen zur Herstellung von Ammoniak. Ein elektrolytisches Verfahren könnte hierbei der schwarze Phosphor katalysieren, haben chinesische Wissenschaftler jetzt herausgefunden. Wie sie in der Zeitschrift Angewandte Chemie schreiben, sind die nanodünnen Schichten von schwarzem Phosphor ein hochselektiver und effizienter Katalysator für die Reduktion von Stickstoff zu Ammoniak.

Ammoniak wird in fast allen Industriezweigen gebraucht, für die Herstellung von Düngemitteln, Feinchemikalien und Medikamenten. Seit einem Jahrhundert wird dieser Rohstoff nach dem Haber-Bosch-Verfahren hergestellt: Stickstoff aus der Luft wird von Wasserstoff oder Synthesegas an einem Katalysator und unter hohem Druck und bei hohen Temperaturen reduziert. Allerdings benötigt der Prozess enorm viel Energie. Ein bis zwei Prozent des globalen Energieverbrauchs entfallen inzwischen auf die industrielle Ammoniakproduktion.

Daher suchen Wissenschaftler nach umweltfreundlicheren Alternativen. Im Fokus stehen insbesondere metallfreie Katalysatoren, die unter Normalbedingungen einen hohen Wirkungsgrad haben. Ein derzeit hochaktueller Kandidat ist Phosphor, und zwar in seiner unreaktivsten, ungiftigen Form, als schwarzer Phosphor. In der Elektrotechnik wird er derzeit intensiv erforscht, weil er leicht metallische und ungewöhnliche elektronische Eigenschaft hat. Als Katalysator könnte seine charakteristische wellblechartige Struktur bei der Umsetzung von reaktionsträgen Molekülen helfen.

Um einen solchen Phosphorkatalysator zu erhalten, stellten die Forscher Haihui Wang an der South China University of Technology, Guangzhou, China, und seine Kollegen zunächst dünnen Schichten von schwarzem Phosphor her, und zwar „durch eine einfache Flüssig-Abblättertechnik aus dem schwarzen Phosphormaterial“, wie sie in ihrem Artikel schreiben. Anschließend betteten sie die Katalysator-Nanoblätter in eine Kohlenstoff-Faser-Elektrode ein. Der Stickstoff war in der gesättigten Elektrolytlösung vorhanden.

Unter Spannung produzierte die elektrochemische Zelle sofort selektiv Ammoniak aus Stickstoff. So viel, dass die schwarzen Phosphorblättchen in ihrer Leistung „die meisten nichtmetallischen und metallischen derzeit erforschten Katalysatoren“ übertrafen, so der Bericht. Die Autoren wollten dann wissen, warum die Phosphorblättchen so aktiv und selektiv waren.

Aus Berechnungen am Computer ging hervor, dass der Phosphor mit seinen vielen Falten, anders als andere schicht- oder blattbildenden Materialien, ideale Anknüpfungsstellen für Stickstoff bietet. An den Kanten passte die elektronische Struktur ausgezeichnet für Bindung, Aktivierung und Reduktion des reaktionsträgen Stickstoffmoleküls, ohne viel Energie aufwenden zu müssen.

Der schwarze Phosphor in seiner Nanoblättchenform war zwar aktiv und selektiv. Bei einer längerfristigen Auslastung setzten dann aber doch unerwünschte Oxidationsprozesse ein. „Daher müssen noch weitere Verbesserungen gemacht werden, um den Abbau des schwarzen Phosphors zu verhindern“, so die Autoren.

Diese Arbeit zeigt neue Anwendungsmöglichkeiten für schwarzen Phosphor. Als Katalysator für die Aktivierung und Reduktion von Stickstoff übertrifft er viele traditionelle Katalysatoren. Schwarze Phosphorelektroden könnten es in Zukunft daher vielleicht mehr geben. Und vielleicht auch einmal eine Alternative für den Haber-Bosch-Prozess.

Fakten, Hintergründe, Dossiers
Mehr über Angewandte Chemie
  • News

    Fullerene überbrücken Leitungslücke in organischer Photovoltaik

    In der organischen Photovoltaik werden mittlerweile bemerkenswert hohe Wirkungsgrade erzielt. Allerdings müssen noch besser kombinierbare Materialien für den Zellaufbau gefunden werden, um Preis und Aufwand möglichst gering zu halten. Mit einer Zwischenschicht aus einem ionischen Polymer mi ... mehr

    Goldkugel im goldenen Käfig

    Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale aus 20 Goldatomen umhüllt ist. Wie die Wissenschaftler in der Zeitschrift Angewandte Chemie berichten, basiert die besondere Stabil ... mehr

    Aus dem Meer ins Labor

    Das Meer und seine riesige Zahl und Vielfalt an Lebewesen sind ein noch weitgehend unerforschter Fundus für Naturstoffe, die Ausgangspunkt für neue wirksame Pharmaka sein können, wie die Antitumormittel Trabectedin und Lurbinectidin. Aufgrund der nur sehr geringen Mengen, die aus Meeresorga ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.