Meine Merkliste
my.chemie.de  
Login  

Effizienter Katalysator zur Wasserspaltung

Neues Halbleiter-Hybridmaterial für die nachhaltige Wasserstoffproduktion

20.05.2019

A. Battenberg / TUM

Nadeln des flexiblen Halbleiter-Materials SnIP.

T. Nilges / TUM

Eine Kette aus Zinn- und Iod-Atomen bildet die eine, die Phosphoratome die andere Kette der Doppelhelix von SnIP.

Ein Forschungsteam der Technischen Universität München (TUM) hat im Rahmen einer internationalen Kooperation einen effizienten Wasserspaltungskatalysator entwickelt. Er besteht aus einer Doppelhelix-Halbleiterstruktur, umhüllt mit Kohlenstoffnitrid. Dieser Katalysator ist ideal um billig und nachhaltig Wasserstoff zu erzeugen.

Einem internationalen Team um den TUM-Chemiker Tom Nilges und den Ingenieur Karthik Shankar von der University of Alberta ist es gelungen, eine stabile und trotzdem flexible Halbleiterstruktur zu finden, die Wasser deutlich effizienter spaltet als bisher möglich.

Kern der Struktur ist eine anorganische Doppelhelix-Verbindung aus den Elementen Zinn, Iod und Phosphor (SnIP). Sie wird in einem einfachen Prozess bei Temperaturen um 400 Grad Celsius synthetisiert. SnIP-Fasern sind einerseits flexibel und gleichzeitig so robust wie Stahl.

„Das Material vereinigt die mechanischen Eigenschaften eines Polymers mit dem Potential eines Halbleiters“, sagt Tom Nilges, Professor für Synthese und Charakterisierung innovativer Materialien an der TU München. „Daraus können wir in einem weiteren technischen Schritt flexible Halbleiterbauteile herstellen.“

Weiche Schale, harter Kern

Mit dem Wasserspaltungskatalysator entwickelte das Forschungsteam eine erste Anwendung für das ungewöhnliche Material. Sie stellten dafür jeweils Nanoteilchen aus beiden Ausgangssubstanzen her und vermischten die Suspensionen dieser beiden Nanoteilchen miteinander. Dabei entsteht eine Struktur aus hartem und trotzdem flexiblem Kern aus SnIP-Doppelhelices umhüllt mit einer weichen Schale aus Kohlenstoffnitrid.

Wie Messungen zeigten, ist die so entstandene heterogene Struktur nicht nur deutlich stabiler als die Ausgangsstoffe, sie kann auch Wasser viermal effizienter spalten als bisher möglich – und ist so interessant als Material, mit dem sich günstig Wasserstoff herstellen oder überschüssiger Strom aus Windkraftanlagen chemisch speichern lässt.

Eindimensionale Fasern

Die hohe Effizienz des Katalysators hängt vor allem mit seiner größeren Oberfläche zusammen. Dem Team gelang es, die Oberfläche zu vergrößern, indem sie die SnIP-Fasern in dünnere Stränge teilten. Am effektivsten ist eine Mischung aus 30 Prozent SnIP mit 70 Prozent Kohlenstoffnitrid.

Die dünnsten Fasern bestehen dabei aus wenigen Doppelhelix-Strängen und sind nur wenige Nanometer dick. Das Material ist also praktisch eindimensional. Eingewickelt in Kohlenstoffnitrid behält es seine hohe Reaktivität, ist aber langlebiger und damit als Katalysator besser geeignet.

Flexible Halbleiter könnten neuen Hype auslösen

Die eindimensionalen SnIP-Doppelhelices eröffnen auch noch ganz andere Anwendungen . Besonders spannend für die Forschenden wäre es, nur noch einen Doppelhelix-Strang von SnIP zu haben. Der würde dann rechts- oder linksdrehend vorliegen – mit jeweils ganz besonderen optischen Eigenschaften. Das macht SnIP für die Optoelektronik interessant.

„Wir konnten theoretisch zeigen, dass viele andere Verbindungen dieser Art existieren können und arbeiten gerade an der Synthese dieser Materialien“, sagt Nilges. „Flexible anorganische, nanometergroße 1D-Halbleiter können einen ebenso großen Hype auslösen wie es derzeit bei 2D-Schichtmaterialien wie Graphen, Phosphoren oder Molybdändisulfid der Fall ist.“

Fakten, Hintergründe, Dossiers
Mehr über TU München
  • News

    TU München, Oerlikon, GE Additive und Linde gründen Cluster für Additive Fertigung in Bayern

    Die Technische Universität München (TUM), Oerlikon, GE Additive und Linde gründen gemeinsam ein Cluster für Additive Fertigung. Dieses Cluster ist ein Zusammenschluss von Unternehmen und Organisationen mit dem Ziel, an einem einzigen Standort Additive Fertigungstechnologien zu erforschen un ... mehr

    Licht in der Nanowelt

    Einem internationalen Team um Alexander Holleitner und Jonathan Finley, Physiker an der Technischen Universität München (TUM), ist es gelungen, Lichtquellen in atomar dünnen Materialschichten auf wenige Nanometer genau zu platzieren. Die neue Methode ermöglicht eine Vielzahl von Anwendungen ... mehr

    Künstliche Intelligenz löst Rätsel der Physik der Kondensierten Materie

    Für einige Phänomene der Quanten-Vielteilchenphysik gibt es mehrere Theorien. Doch welche Theorie beschreibt ein quantenphysikalisches Phänomen am besten? Ein Team von Forschern der Technischen Universität München (TUM) und der amerikanischen Harvard University nutzt nun erfolgreich künstli ... mehr

  • Videos

    Scientists pair up two stars from the world of chemistry

    Many scientists consider graphene to be a wonder material. Now, a team of researchers at the Technical University of Munich (TUM) has succeeded in linking graphene with another important chemical group, the porphyrins. These new hybrid structures could also be used in the field of molecular ... mehr

  • q&more Artikel

    Ernährung, Darmflora und Lipidstoffwechsel in der Leber

    Die Natur bringt eine enorme Vielfalt an Lipidmolekülen hervor, die über unterschiedliche Stoffwechselwege synthetisiert werden. Die Fettsäuren sind Bausteine verschiedener Lipide, einschließlich Zellmembranlipiden wie die Phospholipide und Triacylglyceride, die auch die Hauptkomponenten de ... mehr

    Translation

    Die Struktur der chemischen und pharmazeutischen Großindustrie hat sich gewandelt. Traditionelle Zentralforschungsabteilungen, in denen grundlagennahe Wissenschaft ­betrieben wurde, sind ökonomischen Renditebetrachtungen zum Opfer gefallen. mehr

    Molekülgenaue ­Detektivarbeit

    Die drei Ausdrücke im Titel ebenso wie „Known Unknowns“ und „Unknown Unknowns“ sind eingedeutschte Schlagwörter, die derzeit die analytische Wasserszene durcheinanderwirbeln. Die Vorgehensweise in der Nutzung eben dieser Technologien ist jedoch häufig noch nicht ­einheitlich. mehr

  • Autoren

    Dr. Josef Ecker

    Josef Ecker, Jahrgang 1978, studierte Biologie an der Universität in Regensburg. Er promovierte 2007 und forschte danach als Postdoc am Uniklinikum in Regensburg am Institut für Klinische Chemie. Nach einer anschließenden mehrjährigen Tätigkeit in der Industrie im Bereich der Geschäftsführu ... mehr

    Prof. Dr. Arne Skerra

    Arne Skerra, Jg. 1961, studierte Chemie an der TU Darmstadt und wurde 1989 zum Dr. rer. nat. am GenZentrum der LMU München promoviert. Nach Stationen am MRC Laboratory of Molecular Biology in Cambridge, Großbritannien und am Max-Planck-Institut für Bio­physik in Frankfurt/M. wurde er 2004 P ... mehr

    Dr. Thomas Letzel

    Thomas Letzel, geb. 1970, studierte Chemie (1992–1998) an der TU München sowie der LMU München und promovierte 2001 mit einem umweltanalytischen Thema an der TU München und absolvierte im Anschluss einen zweijährigen Postdoc-Aufenthalt an der Vrijen Universiteit Amsterdam. 2009 habilitierte ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.