Meine Merkliste
my.chemie.de  
Login  

Leistungsschub für Permanentmagnete

Forschergruppe untersucht Struktur und Verhalten auf atomarer Ebene

07.07.2017

RESPONSE

Atomar aufgelöste Z-Kontrast Falschfarbenabbildung eines represenativen Teils der Zr-reichen Plättchenphase.

Ein Forschungsteam an der TU Darmstadt hat auf atomarer Ebene untersucht, wie sich Veränderungen im Eisengehalt auf die Mikrostruktur von Samarium-Kobalt-Magneten auswirken. Die Ergebnisse wurden jetzt in „Nature Communications“ veröffentlicht und könnten langfristig zur Entwicklung von Permanentmagneten mit verbesserter Leistung genutzt werden. Solche Magnete finden sich beispielsweise in Mikrowellen, Gyroskopen oder Satelliten-Steuerungen.

Obwohl Samarium-Kobalt-Magnete (Sm2Co17-Magneten), eine Art von Seltenerd-Permanentmagneten, bereits in den frühen 1960er Jahren entdeckt wurden, wurde der ihren Eigenschaften zugrunde liegende Domänenwand-Pinning-Mechanismus lange nicht verstanden. Die Darmstädter Forscher konnten zeigen, dass der Eisengehalt die Ausbildung einer diamantförmigen Zellstruktur steuert, welche die Dichte und Stärke der Domänenwand-Pinning-Zentren und damit die Koerzitivfeldstärke, also gleichsam die „Widerstandskraft“ gegen Entmagnetisierung, dominiert. Durch die Verwendung eines aberrationskorrigierten Rastertransmissionselektronenmikroskops mit atomarer Auflösung in Kombination mit mikromagnetischen Simulationen konnten die Autoren der Veröffentlichung erstmals die Atomstruktur der einzelnen Phasen aufdecken sowie eine direkte Korrelation zu den makroskopischen magnetischen Eigenschaften herstellen. Im Hinblick auf zukünftige Entwicklungen kann dieses Wissen zur Herstellung von Samarium-Kobalt-Permanentmagneten mit verbesserter magnetischer Leistung angewendet werden.

Pinning-dominierte Permanentmagnete, die bei Temperaturen über 100 Grad Celsius stabil arbeiten können, steigern die Leistungsfähigkeit von magnetbasierten industriellen Anwendungen. Dazu gehören Mikrowellenröhren, Gyroskope und Beschleunigungsmesser, Reaktions- und Impulsräder zum Beispiel zur Steuerung und Stabilisierung von Satelliten, Magnetlagern, Sensoren und Aktoren. Sm2(Co, Fe, Cu, Zr)17 ist ein wichtiges industriell verwendetes Materialsystem, da es sowohl eine hohe Curie-Temperatur als auch eine hohe magnetokristalline Anisotropie besitzt. Im Gegensatz zu nukleationsgesteuerten Nd-Fe-B-basierten Permanentmagneten behält der Sm2Co17-Typ bei hohen Temperaturen seine hervorragenden magnetischen Eigenschaften bei.

Um hohe magnetische Leistungen zu erhalten, ist es zum einen notwendig, die Syntheseparameter bei der Herstellung präzise zu steuern und zum anderen die atomare Struktur und das Verhalten der beteiligten Phasen gründlich zu verstehen.

Eine höhere Sättigungsmagnetisierung, die durch einen erhöhten Eisengehalt erreicht wird, ist für die Erreichung größerer Energieprodukte in diesen Seltenerd-Permanentmagneten von wesentlicher Bedeutung. Das Darmstädter Forschungsteam entwickelte Sm2Co17-Modellmagneten mit einem erhöhten Eisengehalt. Eine chemische Modifikation durch Zugabe von Eisen, Kupfer und Zirconium erzeugt eine besondere Nanostruktur. Dr. Leopoldo Molina-Luna, der die Untersuchung als verantwortlicher Autor koordinierte, stellte die Forschungsergebnisse auf der „Nature Conference on Electron Microscopy for Materials – The Next Ten Years“ (24. bis 27. Mai) an der Zhejiang University in Hangzhou, China, vor.

Anschlussforschung für bessere Magnetleistung

Weitere Untersuchungen an der TU Darmstadt zu diesem Materialsystem werden temperaturabhängige Studien mit einem kürzlich erworbenen DENSsolutions mikroelektromechanischen System (MEMS) chip-basierten TEM In-situ-Halter beinhalten. Eine Vision der Wissenschaftler an der TU Darmstadt ist es, durch die Umsetzung dieses State-of-the-Art-Setups in Kombination mit fortschrittlichen Simulationstechniken die Mechanismen, welche zu einer verbesserten magnetischen Leistung bei Sm2Co17-basierten und verwandten Permanentmagneten führen, weiter zu untersuchen. Dies würde einen großen Durchbruch auf diesem Gebiet darstellen. Darüber hinaus sind spezielle ortsspezifische Elektronenenergieverlustmessungen in Zusammenarbeit mit Kollegen aus dem Beijing National Center für Elektronenmikroskopie geplant, welche den magnetischen chiralen Dichroismus als Basis für eine quantitative, lokale Bestimmung der Magneteigenschaften verwenden.

Die in „Nature Communications“ veröffentlichten Ergebnisse wurden im Rahmen des LOEWE-Forschungsschwerpunktes RESPONSE (Ressourcenschonende Permanentmagnete durch optimierte Nutzung Seltener Erden), der von Prof. Dr. Oliver Gutfleisch koordiniert wird, gewonnen. Der Schwerpunkt umfasst die Fachbereiche Material- und Geowissenschaften, Chemie und Maschinenbau und zielt darauf ab, den Einsatz von Seltenerd-Permanentmagneten zu optimieren.

Fakten, Hintergründe, Dossiers
  • Rastertransmissions…
Mehr über TU Darmstadt
  • News

    Brandsicher und nachhaltig

    Der Brand im Londoner Grenfell-Tower hat es noch einmal in den Fokus gerückt: Die Anforderungen an moderne Dämmmaterialien sind hoch. Neben ihrer geringen Wärmeleitfähigkeit sollen sie brandsicher, wirtschaftlich und nachhaltig sein. An einem Dämmstoff, der all das kann, forschen Wissenscha ... mehr

    Kohlenstoff mit Luftreservoir: Neue Materialklasse entdeckt

    Forscher der TU Darmstadt und der Universität Bonn haben Kohlenstoffmaterialien so modifiziert, dass sie unter Wasser auf ihrer Oberfläche eine permanent eingeschlossene Luftschicht anlagern können. Diese in der Natur als Salvinia-Effekt bekannte Eigenschaft kann zukünftig auch für technisc ... mehr

    Mehr Druck für mehr Kühlung

    Hochdruckkühlungen können zu effektiverer Wärmeabfuhr beitragen. Das zeigten Chemiker der TU Darmstadt und der Universität Lyon. Effektive Kühlung ist die Voraussetzung für viele technische Prozesse und Produkte, zum Beispiel für neue, schnellere Generationen von Computerchips, welche immer ... mehr

  • Universitäten

    Technische Universität Darmstadt

    mehr

  • q&more Artikel

    Einsichten

    Eigentlich ist die Brennstoffzellentechnik schon „ein alter Hut“. Die erste Brennstoffzelle wurde von Sir William Grove 1839 entwickelt, der erste Brennstoffzellenstapel bereits 1842 der Öffentlichkeit präsentiert. Trotzdem verstaubte das innovative elektrochemische Konzept vorerst in der S ... mehr

    Makromolekulare Schlingpflanzen

    Eine Kurve, die sich mit konstanter Steigung um den Mantel eines Zylinders windet, wird als ­(zylindrische) Helix bezeichnet. Ihre Bildung kann man sich als eine Überlagerung einer Trans­lations- mit einer Rotations­bewegung vorstellen, wobei bei gleich bleibendem Rotationssinn ein Wechsel ... mehr

    Kohlenstoff in 1-D, 2-D und 3-D

    Das Element Kohlenstoff sorgt wie kein anderes ­Element des Periodensystems der Elemente seit­ ­nunmehr als 25 Jahren in regelmäßigen Abständen für intensive Forschungsaktivitäten. War es Mitte der 80er-Jahre die Entdeckung der gezielten Synthese der sphärischen Allotrope des Kohlenstoffs, ... mehr

  • Autoren

    Prof. Dr. Katja Schmitz

    Katja Schmitz, geb. 1978, studierte Chemie in Bonn und Oxford und fertigte nach dem Diplom­abschluss 2002 ihre Promotion über Peptide, Peptoide und Oligoamine als molekulare Transporter in der Arbeitsgruppe von Ute Schepers im Arbeitskreis von Konrad Sandhoff an der Universität Bonn an. 200 ... mehr

    Constantin Voss

    Constantin Voss, geb. 1985, studierte Chemie an der Technischen Universität Darmstadt mit dem Abschluss Diplom-Ingenieur. Seine Diplomarbeit mit dem Titel „Synthese von funktionali­sierten Distyrylpyridazinen für die Fluoreszenz­diagnostik“ fertigte er 2011 im Arbeitskreis Prof. Boris Schmi ... mehr

    Prof. Dr. Boris Schmidt

    Boris Schmidt, geb. 1962, studierte Chemie an der Universität Hannover und am Imperial College in London. Nach seiner Promotion 1991 an der Universität Hannover lehrte er bis 1994 am Uppsala Biomedical Centre und forschte zwischenzeitlich als DFG-Stipendiat im Rahmen eines Post-Doc-Aufentha ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.