Meine Merkliste
my.chemie.de  
Login  

Neues Verfahren zur Strukturbestimmung von Molekülen

Röntgenbildgebung mit deutlich höherer Auflösung

04.08.2017

Physiker der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben gemeinsam mit Kollegen vom Deutschen Elektronen-Synchrotron (DESY), Hamburg, ein Verfahren vorgeschlagen, mit dem sich die Qualität von Röntgenbildern gegenüber herkömmlichen Methoden erheblich verbessern lässt. Mit der Inkohärenten Diffraktiven Bildgebung (IDI) soll es künftig möglich sein, einzelne Atome in Nanokristallen oder Molekülen schneller und mit wesentlich höherer Auflösung abzubilden.

Seit über 100 Jahren werden Röntgenstrahlen in der Kristallografie eingesetzt, um die Struktur von Molekülen zu bestimmen. Dabei wird das Prinzip der Beugung und Überlagerung genutzt, dem alle Wellen unterliegen: Lichtwellen, die aus Photonen bestehen, werden von den Atomen im Kristall abgelenkt und überlagern sich – wie Wasserwellen, die von Hindernissen in einem langsam strömenden Fluss erzeugt werden. Misst man ausreichend viele dieser Photonen mit einem Detektor, erhält man ein charakteristisches Beugungsbild oder Wellenmuster, aus dem die Form der Kristallstruktur abgeleitet werden kann. Voraussetzung hierbei ist, dass die Wellen kohärent gestreut werden, also eine feste Phasenbeziehung zwischen ein- und ausfallenden Photonen besteht. Im Bild des Gewässers entspricht dies Wasserwellen, die wirbelfrei und ohne Turbulenzen von den Hindernissen abgelenkt werden. Ist die Streuung der Photonen inkohärent, besteht keine feste Phasenbeziehung mehr zwischen ein- und ausfallenden Photonen, weswegen – wie bei einer turbulenten Wasserströmung – nicht mehr auf die Anordnung der Atome rückgeschlossen werden kann.

Kohärente Bildgebung hat Schwächen

Dennoch hat auch die kohärente diffraktive Röntgenbildgebung einen entscheidenden Nachteil: „Meist überwiegt bei Röntgenlicht die inkohärente Streuung, etwa in Form von Fluoreszenzlicht, das durch Photonenabsorbtion und anschließende Emission entsteht“, erklärt Anton Classen, Mitarbeiter der AG Quantenoptik und Quanteninformation der FAU. „Dadurch wird ein diffuser Hintergrund erzeugt, der nicht für die kohärente Bildgebung genutzt werden kann und die Abbildungstreue kohärenter Methoden reduziert.“

Neues Verfahren nutzt inkohärente Strahlung

Genau diese bislang unerwünschte inkohärente Strahlung wollen die Forscher der FAU für ihr neues Bildgebungsverfahren nutzen. „Bei unserer Methode werden die inkohärent gestreuten Photonen des Röntgenlichts nicht über einen langen Zeitraum, sondern zeitaufgelöst in kurzen Schnappschüssen aufgenommen“, erklärt Prof. Joachim von Zanthier. „Werden die Schnappschüsse einzeln ausgewertet, erhält man wieder die Informationen über die Anordnung der Atome.“ Der Trick dabei ist, dass innerhalb kurzer Sequenzen die Lichtbeugung kohärent erfolgt. Hierfür müssen allerdings Röntgenblitze von wenigen Femtosekunden – also wenige Billiardstel einer Sekunde – verwendet werden, die erst neuerdings von Freie-Elektronen-Lasern wie dem Europäischen XFEL in Hamburg oder der Linac Coherent Light Source (LCLS) in Kalifornien, USA, erzeugt werden können.

Abbildung einzelner Moleküle möglich

Da die neue Methode Fluoreszenzlicht nutzt, steht viel mehr Signal als bisher zur Verfügung, das zudem in deutlich größere Ablenkwinkel gestreut wird, womit mehr Ortsinformation gewonnen wird. Darüber hinaus kann mit Filtern das Licht nur bestimmter Atomsorten gemessen werden. Dadurch wird es möglich, die Position einzelner Atome in Molekülen und Proteinen mit deutlich höherer Auflösung im Vergleich zur kohärenten Bildgebung bei Verwendung von Röntgenlicht derselben Wellenlänge zu bestimmen. Das Verfahren könnte somit besonders der Erforschung von Proteinen in der Strukturbiologie und in der Medizin neue Impulse geben.

Fakten, Hintergründe, Dossiers
Mehr über Friedrich-Alexander-Universität Erlangen-Nürnberg
  • News

    Meilenstein auf dem Weg zur effizienten Solarzelle

    Mehr Strom aus Solarzellen gewinnen und die sogenannte Singulett-Spaltung besser erforschen. Daran arbeiten Naturwissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) in einem gemeinsamen Forschungsprojekt mit dem Argonne-Northwestern Solar Energy Research (ANSER) Cent ... mehr

    Kommt die energiespeichernde Solarzelle?

    Die Speicherung von Sonnenenergie ist die zentrale Herausforderung der Energiewende. Neben den klassischen Lösungen wie Solarzellen oder Batterien eröffnen kreative chemische Konzepte der Energiespeicherung völlig neue Chancen. So ist es möglich, durch intramolekulare Reaktionen die Umwandl ... mehr

    „Elektrisierende“ Chemie unter der Lupe

    Die Chemie hat eine „elektrisierende“ Zukunft: Mit der steigenden Verfügbarkeit elektrischer Energie aus erneuerbaren Quellen wird es in der Zukunft möglich sein, viele chemische Prozesse durch elektrischen Strom anzutreiben. Auf diese Weise können auf nachhaltige Weise Produkte oder Brenns ... mehr

  • Universitäten

    Friedrich-Alexander-Universität Erlangen-Nürnberg

    Das über die Jahre gewachsene breite Fächerangebot der Friedrich-Alexander-Universität bietet die einzigartige Chance, interdisziplinäre, über Fakultätsgrenzen hinweg arbeitende Kompetenzzentren und Zentralinstituten einzurichten. Verwurzelt in der klassischen humanistischen Bildung und auf ... mehr

  • q&more Artikel

    Modellierte Medikamente

    Computergestütztes Medikamentendesign (CADD) ist nichts Neues. Das Journal of ­Computer-Aided Molecular Design (Springer) wurde 1987 gegründet, als die 500 weltweit schnellsten Computer langsamer als ein heutiges Smartphone waren. Damit ist dieses Feld ein Vierteljahrhundert alt. mehr

  • Autoren

    Prof. Dr. Timothy Clark

    Tim Clark, geb. 1949 in England, promovierte 1973 an der Queens Universität Belfast. Er ist Direktor des Computer-Chemie-­Centrums in Erlangen sowie des Centre for Molecular Design an der Universität Portsmouth, UK. Er entwickelt und wendet Modelle und Simulationstechniken für Chemie, Werks ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.