Meine Merkliste
my.chemie.de  
Login  

Steife Fasern aus Schleim gesponnen

Nanopartikel aus Sekret von Stummelfüßern bilden Polymerfäden, die in Wasser recycelt werden können

18.10.2017

© Alexander Bär / Nature Communications 2017

Schleimige Jagdwaffe: Stummelfüßer, die wie Würmer mit kurzen Beinchen aussehen, fangen ihre Beutetiere mit einem Sekret, aus dem sich Polymerfasern bilden, wenn sich die Opfer bewegen.

© Matthew Harrington / Nature Communications 2017

Recycelbare Polymerfasern: Der Schleim von Stummelfüßern enthält Nanokugeln aus Fetten und Proteinen. Scherkräfte bewirken, dass die Proteine Fasern bilden, die von einer fettreichen Schicht eingehüllt werden. Diese lösen sich in Wasser wieder zu den ursprünglichen Nanopartikeln auf, aus denen sich das Polymer erneut formen kann.

Die Natur ist immer wieder ein guter Lehrmeister – auch für Materialwissenschaftler. An Stummelfüßern haben Wissenschaftler nun einen bemerkenswerten Mechanismus beobachtet, durch den sich Polymermaterialien bilden. Um Beute zu fangen, schießen die wurmartigen Kleintiere mit einem klebrigen Sekret, das sich unter Krafteinwirkung zu festen Fäden versteift. Das Besondere: Die Fäden lassen sich wieder auflösen und danach erneut bilden. Dass sich aus dem zuvor flüssigen Sekret reversibel Polymerfasern ziehen lassen, ist für die Forscher ein sehr interessantes Konzept. Gut möglich, dass sie eines Tages in der Lage sein werden, neuartige recycelbare Materialien nach dem Prinzip der Stummelfüßer nachhaltig zu synthetisieren.

Manche Tiere produzieren erstaunliche Materialien. Spinnenseide etwa übertrifft in Sachen Festigkeit sogar Stahl. Muscheln sondern Byssusfäden ab, mit denen sie sich unter Wasser fest an Steine heften können. Ähnlich beeindruckend ist das, was sogenannte Stummelfüßer von sich geben. Die kleinen Tiere, die wie eine Mischung aus Regenwurm und Raupe aussehen, verspritzen eine klebrige Flüssigkeit, um Feinde abzuwehren oder Beute zu fangen. Besonders tückisch für Opfer wie Asseln, Grillen oder Spinnen: Sobald diese versuchen, sich aus den Schleimfäden herauszuwinden, verfestigen sich die Fäden durch die Bewegung, so dass es erst recht kein Entkommen mehr gibt.

„Die bei der Bewegung auf den Schleim wirkenden Scherkräfte sorgen dafür, dass dieser zu steifen Fäden aushärtet“, erklärt Alexander Bär, Promotionsstudent beim Stummelfüßer-Experten Georg Mayer an der Universität Kassel, das Phänomen. Um den Schleim einer australischen Stummelfüßer-Art genauer zu untersuchen, arbeitete der Biologe eng mit Forschern des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam zusammen. Der Chemiker Stephan Schmidt etwa, mittlerweile Juniorprofessor an der Heinrich-Heine Universität in Düsseldorf, half bei der Aufklärung der Schleim-Nanostruktur. Weitere Fragen zur chemischen Zusammensetzung und zu molekularen Prozessen bearbeitete eine vom Biochemiker Matt Harrington geleitete Forschungsgruppe im Bereich Biomaterialien des Potsdamer Instituts. Die interdisziplinäre Wissenschaftlergruppe interessierte sich dabei vor allem dafür, wie sich Zusammensetzung und Struktur des Sekrets während der Fadenbildung verändern.

Schleimiger Mix aus Proteinen und Fettsäuren

„Wir wussten schon vorher, dass der Schleim vor allem aus großen Proteinmolekülen und Fettsäuren besteht“, sagt Alexander Bär. Am Potsdamer Max-Planck-Institut fanden die Forscher nun heraus, dass Eiweiße und Fette gemeinsam winzige Kügelchen formen. „Die Stummelfüßer produzieren die Protein- und Fettmoleküle sowie weitere Komponenten separat.“, so Bär weiter. „Außerhalb der Drüsenzellen formen sich die Nanoglobuli dann eigenständig und sorgen für die fadenbildenden und klebrigen Eigenschaften.“ Die Kügelchen werden mit bemerkenswerter Präzision gebildet, denn sie sind einheitlich und im Durchmesser immer rund 75 Nanometer groß.

Ihre flüssige Waffe speichern die Stummelfüßer, bis sie zum Einsatz kommt. Durch Muskelkontraktion schießen sie den Schleim dann durch zwei Düsen an beiden Seiten des Kopfes auf Beute oder Feind. „Zunächst ändert sich dabei die klebrige Konsistenz nicht“, sagt Bär. „Aber wenn sich das Beutetier bewegt und dadurch Scherkräfte auf den Schleim wirken, werden die Nanoglobuli zerrissen.“

Schwingungsspektroskopische Untersuchungen in Potsdam zeigten, dass Proteine und Fettsäuren dabei voneinander getrennt werden. „Während Proteine sich im Inneren des Schleimfadens zu langen Fasern formieren, werden die Fett- und Wassermoleküle nach außen verdrängt und bilden dort eine Art Ummantelung“, so Bär. Die Forscher stellten auch fest, dass der Proteinstrang im Inneren eine Steifigkeit aufweist, die der von Nylon® ähnelt. Das erklärt die besonderen Eigenschaften der Fäden.

Ausgehärtete Fäden lösen sich in Wasser wieder auf

Durch weitere Versuche fanden die Wissenschaftler heraus, dass sich die ausgehärteten Schleimfäden nach dem Trocknen binnen einiger Stunden wieder in Wasser auflösen lassen. „Erstaunlich für uns war, dass sich Proteine und Lipide dabei offenbar wieder mischen und es zur Bildung der gleichen Nanoglobuli kommt, die wir schon im Ursprungsschleim gefunden haben“, sagt Matt Harrington. Die neu gebildeten Eiweiß-Fett-Kügelchen wiesen sogar ähnliche Größen wie im natürlichen Sekret auf. „Offenbar gibt es also einen definierten Mechanismus der Selbstorganisation, den wir allerdings noch nicht vollends verstehen“, so Harrington.

Für die Forscher auch interessant: Aus dem zurückgewonnenen Schleim ließen sich erneut klebrige Fäden ziehen. Unter dem Einfluss von Scherkräften verhielten sich diese wie das frisch ausgestoßene Stummelfüßer-Sekret: Sie erhärteten. „Das ist ein schönes Beispiel für einen vollständig reversiblen und beliebig wiederholbaren Regenerationsprozess“, sagt Matt Harrington. Der besondere Charme: Das Ganze erfolgt mit Biomolekülen und bei normaler Umgebungstemperatur. Für die Hersteller künstlicher Polymere also ein Modell, von dem sie sich vielleicht viel für eine nachhaltige Produktion von künstlichen Materialen abschauen können.

Das sieht auch Harrington so. Der Biochemiker kann sich gut vorstellen, dass man eines Tages versuchen wird, in ähnlicher Weise auf Basis nachwachsender Rohstoffe Makromoleküle für industrielle Anwendungen zu synthetisieren. Bei Spinnenseide sei es immerhin schon gelungen, entsprechende Proteine industriell zu produzieren und die daraus erzeugten Fasern an die Bekleidungsbranche zu liefern.

Wie werden Proteine und Fettmoleküle getrennt?

Ein Polymer, das sich – wie der ausgehärtete Faden des Stummelfüßers – in Wasser wieder auflöst, wäre zwar vermutlich wenig praktikabel. Doch entscheidend für weitere Inspirationen bei der Materialentwicklung sei das Prinzip, so Matt Harrington. „Im Moment geht es zunächst noch darum, die Mechanismen besser zu verstehen“, betont der Spezialist für Biomaterialien, der inzwischen eine Professur an der McGill University in Montreal angetreten hat. So interessieren sich die Wissenschaftler etwa dafür, warum mechanische Scherkräfte überhaupt die Trennung der Proteine von den Fettmolekülen bewirken. Oder auch dafür, welche Faktoren die reversible Bildung der immer gleich großen Nanokügelchen steuern. Auch die Frage, wie sich die Proteineinheiten zu starren Fasern anlagern, ohne miteinander feste chemische Bindungen einzugehen, sei noch offen, so Max-Planck-Forscher Harrington.

Originalveröffentlichung:

Alexander Baer, Stephan Schmidt, Sebastian Haensch, Michaela Eder, Georg Mayer und Matthew J. Harrington; "Mechanoresponsive lipid-protein nanoglobules facilitate reversible fibre formation in velvet worm slime"; Nature Communications; 17. Oktober 2017

Fakten, Hintergründe, Dossiers
Mehr über MPI für Kolloid- und Grenzflächenforschung
  • News

    Grüne Chemie aus dem Muschelfuß

    Von der Miesmuschel kann sich die Chemieindustrie einiges abschauen. Nicht nur, dass ihr Perlmutt und die reißfesten Fäden, mit denen sie sich am Meeresboden festhält, außergewöhnliche Qualitäten besitzen. Wie sie diese Materialien erzeugt, könnte auch zur Blaupause für eine umweltfreundlic ... mehr

    Holz unter Wasserkraft

    Die Muskeln des Holzes sind seine Zellwände. Denn über die Menge an Wasser, die sie aufnehmen, steuern sie das Verhalten des Holzes: welche Kräfte es ausübt, welchen Belastungen es standhält oder wie es etwa die Schuppen von Tannen- oder Kiefernzapfen bewegt. Wie der Wassergehalt der Zellwä ... mehr

    Nanostrukturen: Kohle nach Maß

    Sie sind klein und kommen als runde, schichtförmige oder faserartige Partikel daher. Und sie bestehen weitgehend aus dem chemischen Element Kohlenstoff. Die Rede ist von zum Teil ungewöhnlichen Kohlenstoffnanostrukturen, wie sie Wissenschaftler des Max-Planck-Instituts für Kolloid- und Gren ... mehr

  • Stellenangebote

    Chemie - oder Physiklaborant/-in

    Das Max-Planck-Institut für Kolloid- und Grenzflächenforschung Potsdam-Golm sucht als Schwangerschafts- und Elternzeitvertretung in Vollzeit zum nächstmöglichen Zeitpunkt befristet eine/-n Chemie - oder Physiklaborant/-in Ihre Aufgaben: Bedienung von Rasterelektronenmikroskopen; Bedienung ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für Kolloid- und Grenzflächenforschung

    Das Max-Planck-Institut für Kolloid- und Grenzflächenforschung wurde 1992 gegründet. Es wird kollegial geleitet und gliedert sich in die Abteilungen Biomaterialien, Biomolekulare Systeme, Grenzflächen, Kolloidchemie und Theorie & Bio-Systeme. Aktuelle Forschungs-schwerpunkte sind polymere F ... mehr

  • q&more Artikel

    Mit Licht im Kampf gegen Malaria

    Malaria stellt ein globales Gesundheitsproblem dar, das nur schwer in den Griff zu bekommen ist. Von den mehr als 200 Millionen Erkrankten sterben jedes Jahr über 500.000 und insbesondere für Kinder ist die Gefahr eines tödlichen Verlaufs hoch [1]. Die Krankheit wird durch einzellige Erreg ... mehr

  • Autoren

    Dr. Daniel Kopetzki

    Daniel Kopetzki, geb. 1983, studierte Chemie an der Universität Regensburg und promovierte am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam in der Abteilung Kolloidchemie. Seit Sept. 2011 arbeitet er als Postdoktorand bei Prof. Dr. Seeberger am Max-Planck-Institut fü ... mehr

    Prof. Dr. Peter Seeberger

    Peter H. Seeberger, geb. 1966, studierte Chemie an der Universität Erlangen-Nürnberg und promovierte in Biochemie an der University of Colorado. Nach einem Postdocaufenthalt am Sloan-Kettering Institute for Cancer Research in New York City war er von 1998 – 2002 Assistant Professor und Firm ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Weniger Dünger reduziert die Feinstaubbelastung

    Für Feinstaub gibt es viele Quellen – nicht nur den Verkehr, der dafür derzeit besonders viel Aufmerksamkeit erfährt. Auch eine Reduktion landwirtschaftlicher Emissionen könnte die Menge an gesundheitsschädlichem Feinstaub erheblich senken, wie eine Studie von Forschern des Max-Planck-Insti ... mehr

    Weltweit kleinster Düsenantrieb entwickelt

    Dr. Samuel Sánchez ist begeistert, gleich wie beim letzten Mal, als er den Eintrag ins Guinnessbuch der Rekorde bekam für den kleinsten Düsenantrieb, der jemals entwickelt wurde. Sánchez ist Wissenschaftler am Stuttgarter Max-Planck-Institut für Intelligente Systeme, wo er die Nanoroboter-F ... mehr

    Kalte Moleküle auf Kollisionskurs

    Wie verlaufen chemische Reaktionen bei extrem tiefen Temperaturen? Um diese Frage zu beantworten, benötigt man molekulare Proben, die gleichzeitig kalt, dicht und langsam sind. Wissenschaftler um Dr. Martin Zeppenfeld aus der Abteilung Quantendynamik von Prof. Gerhard Rempe am Max-Planck-In ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr

Mehr über McGill University
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.