Meine Merkliste
my.chemie.de  
Login  

Wie die Masse in die Welt kommt

Supercomputer berechnen erstmals die exakte Nukleonenmasse

25.11.2008

Einem internationalen Forscherteam ist es erstmalig gelungen, die Masse der wichtigsten Bausteine der Materie - Protonen und Neutronen - auf theoretischem Weg zu berechnen. Das wichtigste Hilfsmittel der Physiker: der Supercomputer JUGENE am Forschungszentrum Jülich. Die aufwändigen Simulationen der Wissenschaftler bestätigen die Richtigkeit einer grundlegenden physikalischen Theorie, der Quantenchromodynamik.

"Mehr als 99,9 Prozent der Masse der sichtbaren Materie stammt von den Protonen und Neutronen", erläutert der gegenwärtig an der Bergischen Universität Wuppertal tätige ungarische Physiker Zoltan Fodor, der das Forschungsprojekt am Jülicher Supercomputer JUGENE geleitet hat. Diese Teilchen, von den Physikern unter dem Begriff "Nukleonen" zusammengefasst, sind aus jeweils drei Quarks aufgebaut.

Die Masse der drei Quarks ergibt zusammengerechnet jedoch nur etwa fünf Prozent der Masse eines Kernbausteins - woher also haben die Nukleonen ihre Masse? Die Antwort auf diese Frage findet sich in der berühmten Formel E = m × c2 von Albert Einstein: Energie und Masse sind zueinander äquivalent, und 95 Prozent der Nukleonenmasse haben ihren Ursprung in der Bewegungsenergie der Quarks und zwischen ihnen ausgetauschter Teilchen.

Die drei Quarks eines Nukleons sind durch die starke Wechselwirkung aneinander gebunden, eine Kraft, die zwar nur im Bereich der Elementarteilchen von Bedeutung ist, die dafür aber - ihr Name sagt es - sehr stark ist. Die Physiker haben seit langem eine theoretische Beschreibung dieser Wechselwirkung, die Quantenchromodynamik. "Im Prinzip sollte es möglich sein, aus der Quantenchromodynamik die Masse der Nukleonen zu berechnen", erklärt Fodor.

Solche Berechnungen sind jedoch ungeheuer kompliziert. So wie die elektromagnetischen Kräfte durch Photonen - Lichtteilchen - vermittelt werden, gibt es auch bei der starken Wechselwirkung Trägerteilchen, die sogenannten Gluonen. Doch diese Gluonen können sich - im Gegensatz zu Photonen - auch gegenseitig anziehen. Diese Selbstwechselwirkung führt einerseits dazu, dass Quarks sich so stark anziehen, dass sie niemals alleine auftreten, sondern immer zu zweit oder zu dritt größere Teilchen bilden. Und anderseits macht die Selbstwechselwirkung die Berechnung der Masse dieser Teilchen so komplex, dass sie bislang die Möglichkeiten der Forscher überstieg.

Dank des Supercomputers JUGENE am Forschungszentrum Jülich konnten Fodor und seine Kollegen nun diese Hürde überwinden, erstmals die starke Wechselwirkung auch für größere Quarkabstände richtig beschreiben und so die Massen von Protonen, Nukleonen und anderen aus Quarks aufgebauten Teilchen berechnen.

Für ihre Berechnungen haben Fodor und seine Kollegen Raum und Zeit in ein engmaschiges vierdimensionales Gitter zerlegt und die komplizierten Gleichungen der Quantenchromdynamik jeweils auf den Punkten dieses Gitters gelöst. Dann haben die Forscher den Abstand der Gitterpunkte schrittweise immer kleiner gemacht, um sich so immer weiter an die Wirklichkeit, die kontinuierliche Raumzeit, anzunähern. "Es handelt sich um eine der rechenintensivsten Arbeiten in der Geschichte der Menschheit", erläutert Fodor.

Als Ergebnis erhielten die Wissenschaftler schließlich Werte für die Massen der Nukleonen, die genau mit den in Experimenten gemessenen Werten übereinstimmen. "Damit haben wir gezeigt, dass die Quantenchromodynamik tatsächlich eine korrekte Beschreibung der starken Wechselwirkung ist", freut sich Fodor.

"Der Ursprung des überwiegenden Teils der Masse der sichtbaren Materie ist dadurch also geklärt", erklärt der Forscher weiter. Doch damit sind nicht alle Rätsel gelöst. Denn die sichtbare Materie macht nur einen kleinen Teil der Gesamtmasse des Universums aus - etwa 80 Prozent dieser Masse ist dunkel und besteht aus bislang unbekannten Elementarteilchen. "Woher diese Dunkle Materie ihre Masse hat, dafür haben wir bislang keine Erklärung."

Originalveröffentlichung: Science 21. Nov. 2008, Vol. 322, 5905

Fakten, Hintergründe, Dossiers
  • Proton
Mehr über Forschungszentrum Jülich
  • News

    Künstliche Synapse aus Nanodrähten

    Jülicher Forscher haben gemeinsam mit Kollegen aus Aachen und Turin ein Schaltelement aus Nanodrähten hergestellt, das ganz ähnlich wie eine biologische Nervenzelle funktioniert. Ihr Bauelement kann sowohl Informationen speichern als auch verarbeiten – und mehrere Signale parallel empfangen ... mehr

    Citizen Science in der Quantenwelt

    Interessierte Laien können die Welt der Wissenschaft bereichern. Bürgerforscher zählen Schmetterlinge, werten Fotoaufnahmen der Marsoberfläche aus oder suchen spielerisch nach der idealen Faltung eines Eiweißmoleküls. Und nun haben rund sechshundert Freizeitwissenschaftler erstmals dabei ge ... mehr

    Stärker als Gorilla-Glas

    Sie sind härter als konventionelles Glas und außerordentlich beständig gegen Hitze und korrosive chemische Substanzen: transparente Keramiken gelten daher als vielversprechende Alternative zu glasbasierten Werkstoffen. Wie alle Keramiken sind sie jedoch sehr anfällig für Brüche. Jülicher Wi ... mehr

  • Videos

    Zukunft ist unsere Aufgabe: Das Forschungszentrum Jülich

    Das Forschungszentrum Jülich betreibt interdisziplinäre Spitzenforschung in den Bereichen Energie und Umwelt sowie Information und Gehirn. Es stellt sich drängenden Fragen der Gegenwart und entwickelt Schlüsseltechnologien für morgen. mehr

    Die (R)Evolution der Elektronenmikroskopie - So funktioniert PICO

    Das Elektronenmikroskop PICO erreicht eine Rekordauflösung von 50 Milliardstel Millimetern. Es ermöglicht Anwendern aus Wissenschaft und Industrie, atomare Strukturen in größtmöglicher Genauigkeit zu untersuchen und Fortschritte in Bereichen wie der Energieforschung oder den Informationstec ... mehr

  • Firmen

    Forschungszentrum Jülich GmbH, Projektträger Jülich

    Forschungsförderung im Auftrage der Bundesministerien für Bildung und Forschung (BMBF), Wirtschaft (BMWA), Umwelt (BMU) sowie verschiedener Bundesländer. mehr

  • Forschungsinstitute

    Forschungszentrum Jülich GmbH

    Das Forschungszentrum Jülich betreibt interdisziplinäre Spitzenforschung zur Lösung großer gesellschaftlicher Herausforderungen in den Bereichen Gesundheit, Energie & Umwelt sowie Informationstechnologie. Kombiniert mit den beiden Schlüsselkompetenzen Physik und Supercomputing werden in Jül ... mehr

    Forschungszentrum Jülich GmbH, Projektträger Jülich

    Erfolgreiche Wissenschaft braucht mehr als gute Forschung. Damit öffentliche Förderprogramme ihre Ziele erreichen, Industriepartner und Forschungseinrichtungen gewinnbringend zusammenarbeiten und Forscher über Fördermöglichkeiten in ihrem Arbeitsfeld gut informiert sind, ist Sachverstand im ... mehr

  • q&more Artikel

    Makromolekulare Umgebungen beeinflussen Proteine

    Eine intensive Wechselwirkung von Proteinen mit anderen Makromolekülen kann wichtige Eigenschaften von Proteinen wie z. B. die Translationsbeweglichkeit oder den Konformationszustand signifi kant verändern. mehr

    Koffein-Kick

    Koffein ist die weltweit am weitesten verbreitete psycho­aktive Substanz. Sie findet sich als Wirkstoff in Getränken wie Kaffee, Tee und sog. Energy Drinks. Koffein kann Vigilanz und Aufmerksamkeit erhöhen, Schläfrigkeit reduzieren und die kognitive Leistungsfähigkeit steigern. Seine neurob ... mehr

  • Autoren

    Prof. Dr. Jörg Fitter

    Jg. 1963, studierte Physik an der Universität Hamburg. Nach seiner Promotion an der FU Berlin war er im Bereich der Neutronenstreuung und der molekularen Biophysik am HahnMeitnerInstitut in Berlin und am Forschungszentrum Jülich tätig. Er habilitierte sich in der Physikalischen Biologie der ... mehr

    Dr. David Elmenhorst

    David Elmenhorst, geb. 1975, studierte Medizin in Aachen und promovierte am Deutschen Zentrum für Luft- und Raumfahrt in Köln im Bereich der Schlafforschung. 2008/2009 war er Gastwissenschaftler am Brain Imaging Center des Montreal Neuro­logical Institut in Kanada. Seit 2003 ist er in der A ... mehr

    Prof. Dr. Andreas Bauer

    Andreas Bauer, geb. 1962, studierte Medizin und Philo­sophie in Aachen, Köln und Düsseldorf, wo er auf dem Gebiet der Neurorezeptorautoradiografie promovierte. Seine Facharztausbildung absolvierte er an der Universitätsklinik Köln, er habilitierte an der Universität Düsseldorf im Fach Neuro ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.